Dense Elements in B-Almost Distributive Fuzzy Lattices

K. Rekhalakshmi^{1, b)}, V. Maheswari^{2, a)} and V. Balaji³ ¹Research Scholar, Department of Mathematics

Vels Institute of Science, Technology & Advanced Studies (VISTAS), Tamil Nadu, India. ²Assistant Professor, Department of Mathematics

Vels Institute of Science, Technology & Advanced Studies (VISTAS), Tamil Nadu, India. ³Assistant Professor, PG & Research Department of Mathematics

Sacred Heart College, Tamil Nadu, India

a) Corresponding author: maheswari.sbs@velsuniv.ac.in

Article Info

Page Number: 739 - 745 Publication Issue: Vol 71 No. 3s2 (2022)

Article History

Article Received: 28 April 2022

Revised: 15 May 2022 Accepted: 20 June 2022 Publication: 21 July 2022

Abstract

In this paper we define the concept of a dense element in a B-Almost Distributive Fuzzy Lattice BADFL (B, A) and prove that the set $D_A(B)$ of all dense elements of B is an implicative filter of B. Also, we establish a fuzzy epimorphism of (B,A) into (B^*,A) the set of all closed elements of (B,A) and prove the existence of an fuzzy epimorphism of $D_A(B)$ into $D_A\left(\frac{B^*\times B}{\theta}\right)$. We prove that (B^*,A) and $\left(\left[\frac{B^* \times B}{a}\right]^*, A\right)$ are fuzzy isomorphic.

1. Introduction

U. M. Swamy and G. C. Rao [8] proposed the notion of an Almost Distributive Lattice (ADL) as a generalisation of most current ring and lattice theoretic extensions of a Boolean algebra. As an extension of Heyting algebra [1] presented the notion of a Heyting Almost Distributive Lattice (HADL) in [6]. If $(H, \vee, \wedge, \rightarrow, 0, m)$ is a HADL, the set H* containing all closed elements of H is both a bounded pseudo complemented semilattice and a bounded implicative subsemilattice of H, as shown in [4]. Zadeh developed the notion of fuzzy set in [10], which was extended by Goguen in [13] and Sanchez in [11] to define and explore fuzzy relations. We also defined a binary operation \vee on (B^*, A) and established that $(B^*, \vee, \wedge, *, 0, m)$ is a fuzzy Boolean Algebra. In this study, we expand certain essential features of Dense elements in BADFL using the fuzzy partial order relation given in [12].

In this paper, we explore the concept of dense elements in an BADFL (B, A) and prove that the set $D_A(B)$ of all dense elements of B is an implicative filter of B. Also we establish an fuzzy epimorphism of (B,A) into (B^*,A) and prove the existence of an fuzzy epimorphism of $D_A(B)$ into $D_A\left(\frac{B^*\times B}{\theta}\right)$. Finally, we prove that (B^*,A) and $\left(\left[\frac{B^*\times B}{\theta}\right]^*,A\right)$ are fuzzy isomorphic.

Following are some significant results and definitions required for the study of dense element characteristics on B-ADFLs.

2. Preliminaries

Definition 2.1. [7]

Let (L, A) be a BADFL with a maximal element m. Suppose \Rightarrow is a binary operation on L if and only if it satisfies the following conditions:

- $A(a \Rightarrow a, m) = 1$ (1)
- (2) $A((a \Rightarrow b) \land b, b) = 1$
- (3) $A(a \land (a \Rightarrow b), a \land b \land m) = 1$
- $A(a \Rightarrow (b \land c), (a \Rightarrow b) \land (a \Rightarrow c)) = 1$ (4)
- $A((a \land b) \Rightarrow c, (a \Rightarrow c) \land (b \Rightarrow c)) = 1$ for every $a, b, c \in L$. (5)

Definition 2.2. [5]

Let $(L, \vee, \wedge, \rightarrow, 0, m)$ be a HADL. An implicative filter is a non-empty subset F of L if and only if

- $a, b \in F \Rightarrow a \land b \in F$, (1)
- $a \in F, b \in L \Rightarrow b \rightarrow a \in F$. (2)

Lemma 2.1. [15]

Let $(L, \vee, \wedge, \rightarrow, 0, m)$ be a HADFL. Then for every $a, b, c \in L$, the following hold:

- $A(b \land m, (a \rightarrow b) \land m) > 0$ (1)
- (2) $A(a \land c \land m \le b \land m) > 0 \Leftrightarrow A(c \land m, (a \to b) \land m) > 0$
- $A([a \rightarrow (b \rightarrow c)] \land m, [(a \land b) \rightarrow c] \land m) > 0$ (3)
- $A([(a \land b) \rightarrow c] \land m, [(b \land a) \rightarrow c] \land m) > 0$ (4)
- $A([a \rightarrow (b \rightarrow c)] \land m, [b \rightarrow (a \rightarrow c)] \land m) > 0$ (5)

Lemma 2.3. [9]

Let (L, A) be a BADFL. Then, for every $x, y \in L$ with $A(x^*, x \Rightarrow 0) = 1$, the following hold.

- $A((x \lor y)^*, x^* \land y^*) = 1$ (1)
- (2) $A(x,y) > 0 \Rightarrow A(y^*,x^*) > 0, A(x^{**},y^{**}) > 0$
- (3) $A(x \wedge x^{**}, x \wedge m) = 1 \text{ and } A(x^{**} \wedge x, x) = 1$
- $(4) \quad A((x \land y)^*, (x \Rightarrow y^*) \land m) = 1$
- $A((x \wedge m)^*, x^*) = 1$ (5)
- $A((x \wedge y)^{**}, x^{**} \wedge y^{**}) = 1.$ (6)

3. Dense Elements in B-Almost Distributive Fuzzy Lattices

In this section, we recall from that if (B,A) is a BADFL and $x \in B$ then $B^* =$ $\{x_{\alpha}^*: x_{\alpha} \in B\}$ of the set of all closed elements of B where $A(x_{\alpha}^*, x_{\alpha} \Rightarrow 0) = 1$.

Definition 3.1

Let (B,A) be a B-ADFL with maximal element m_e . Define $D_{(B,A)} = \{A(x_{\alpha}^*,0) =$ $1, x_{\alpha} \in B$ Then an element of $D_{(B,A)}$ is called a dense element of (B,A).

It can easily observed that if $d_{\alpha} \in B$ then $d \in D_{(B,A)} \Leftrightarrow A(d_{\alpha}^{**}, m_e) = 1$. Now we prove that $D_{(B,A)}$ is a implicative filter of (B,A).

Theorem 3.1

Let (B,A) be a BADFL with maximal element m_e . Then $D_{(B,A)}$ is an implicative filter of (B, A).

Proof. Let (B, A) be a BADFL with maximal m_e . Let $x_\alpha, y_\alpha \in D_{(B,A)}$. Then from lemma (2.3) we have

$$A((x_{\alpha} \wedge y_{\alpha})^{*}, (x_{\alpha} \Rightarrow y_{\alpha}^{*}) \wedge m_{e}) = A((x_{\alpha} \wedge y_{\alpha})^{*}, (x_{\alpha} \Rightarrow (y_{\alpha} \Rightarrow 0) \wedge m_{e})$$

$$A((x_{\alpha} \wedge y_{\alpha})^{*}, (x_{\alpha} \wedge y_{\alpha}) \Rightarrow 0 \wedge m_{e})$$

$$= A((x_{\alpha} \wedge y_{\alpha})^{*}, (x_{\alpha} \Rightarrow 0) \wedge m_{e})$$

$$= A((x_{\alpha} \wedge y_{\alpha})^{*}, x_{\alpha}^{*} \wedge m_{e})$$

Let $d_\alpha\in D_{(B,A)},\,x\in B$, then we get $A(d_\alpha\wedge m_e$, $(x_\alpha\Rightarrow d_\alpha)\wedge m_e$) >0. This implies $A((d_{\alpha} \wedge m_{e})^{**}, [(x \Rightarrow d_{\alpha}) \wedge m_{e}]^{**}) > 0$ and hence

$$A(d_{\alpha}^{**} \wedge m_{e}^{**}, [(x_{\alpha} \Rightarrow d_{\alpha})^{**} \wedge m_{e}^{**}]) > 0$$

$$A(m_{e} \wedge m_{e}^{**}, (x_{\alpha} \Rightarrow d_{\alpha})^{**} \wedge m_{e}^{**}) > 0$$

$$A(m_{e}, (x_{\alpha} \Rightarrow d_{\alpha})^{**}) > 0$$

Therefore $A((x \Rightarrow d_{\alpha})^*, 0) = 1$

From (1) and (2) $D_{(B,A)}$ is implicative filter of (B,A).

Theorem 3.2

Let (B, A) be a BADFL with maximal element m_e and $\alpha_f: (B, A) \to (B^*, A)$ be defined by $A(\alpha_f(x_\alpha), x_\alpha^{**}) = 1$ for all $x_\alpha \in B$ and suppose $x_\alpha, y_\alpha \in B$. Then

- (1) α_f is fuzzy isotone
- (2) $A(\alpha_f(x_\alpha \wedge y_\alpha), \alpha_f(x_\alpha) \wedge \alpha_f(y_\alpha)) = 1$
- (3) $A(\alpha_f(x_\alpha \vee y_\alpha), \alpha_f(x_\alpha) \vee \alpha_f(y_\alpha)) = 1$
- (4) $A(ker ker(\alpha_f), D_{(RA)}) = 1$

Proof. Let $x_{\alpha}, y_{\alpha} \in B$

Assume $A(x_{\alpha}, y_{\alpha}) > 0$ then by [lemma 2.3] (i)

$$A({x_{\alpha}}^{**},{y_{\alpha}}^{**}) = A\big(\alpha_f(x_{\alpha}) \wedge \alpha_f(y_{\alpha})\big) > 0$$

Therefore α_f is fuzzy isotone

(ii)
$$A(\alpha_f(x_\alpha \wedge y_\alpha), (x_\alpha \wedge y_\alpha)^{**}) = A(\alpha_f(x_\alpha \wedge y_\alpha), x_\alpha^{**} \wedge y_\alpha^{**})$$
$$= A(\alpha_f(x_\alpha \wedge y_\alpha), (\alpha_f(x_\alpha) \wedge \alpha_f(y_\alpha)))$$
$$= 1$$

(iii)
$$A(\alpha_{f}(x_{\alpha} \vee y_{\alpha}), (x_{\alpha} \vee y_{\alpha})^{**}) = A(\alpha_{f}(x_{\alpha} \vee y_{\alpha}), (x_{\alpha}^{*} \wedge y_{\alpha}^{*})^{*})$$
$$= A(\alpha_{f}(x_{\alpha} \vee y_{\alpha}), x_{\alpha}^{**} \vee y_{\alpha}^{**})$$
$$= A(\alpha_{f}(x_{\alpha} \vee y_{\alpha}), (\alpha_{f}(x_{\alpha}) \vee \alpha_{f}(y_{\alpha})))$$
$$= 1$$

Let $x_{\alpha} \in D_{(B,A)}$. Then (iv)

$$A(x_{\alpha}^*, 0) = A(x_{\alpha}^{**}, m_e^*)$$
$$= A(\alpha_f(x_{\alpha}), m_e^*)$$
$$= 1$$

Thus $x_{\alpha} \in ker(\alpha_f) = \alpha_f^{-1}(m_e)$

Conversely suppose that $x_{\alpha} \in ker(\alpha_f) = \alpha_f^{-1}(m_e)$. Then

$$A\left(m_e, \alpha_f(x_\alpha)\right) = A(m_e, x_\alpha^{**})$$

$$= A(m_e^*, x_\alpha^{***})$$

$$= A(0, x_\alpha^*)$$

$$= 1$$

and hence $x_{\alpha} \in D_{(B,A)}$.

Therefore $ker(\alpha_f) = D_{(R,A)}$.

.Theorem 3.3

Let (B,A) be a BADFL. Then for any element x_{α} of B there exists $d \in D_{(B,A)}$ such that $A(x_{\alpha} \wedge m_e, x_{\alpha}^{**} \wedge d) = 1$

Proof. Suppose that

$$A(x_{\alpha} \wedge m_{e}, x^{**} \wedge x_{\alpha} \wedge m_{e}) = A(x_{\alpha} \wedge m_{e}, x_{\alpha}^{**} \wedge (x_{\alpha}^{**} \Rightarrow x_{\alpha})) = 1$$

It is enough to prove that $x_{\alpha}^{**} \Rightarrow x_{\alpha} \in D_{(B,A)}$.

$$A(x_{\alpha}^{**}, (x_{\alpha} \land m_{e})^{**}) = A(x^{**}, [x_{\alpha}^{**} \land (x_{\alpha}^{**} \Rightarrow x_{\alpha})]^{**})$$

$$= A(x_{\alpha}^{**}, x_{\alpha}^{**} \land (x_{\alpha}^{**} \Rightarrow x_{\alpha})^{**})$$

$$= 1$$

on the other hand, $A(0, x_{\alpha}^* \wedge x_{\alpha}^{**}) = A(0, x_{\alpha} \wedge m_e) > 0$

$$\Rightarrow A(x_{\alpha}^*, x_{\alpha}^{**} \Rightarrow (x_{\alpha} \land m_e)) = A(x^*, (x_{\alpha}^{**} \Rightarrow x_{\alpha}) \land m_e)$$
so that
$$A((x_{\alpha}^{**} \Rightarrow x_{\alpha})^*, [(x_{\alpha}^{**} \Rightarrow x_{\alpha}) \land m_e]^*) = A((x_{\alpha}^{**} \Rightarrow x_{\alpha})^*, x_{\alpha}^{**}) > 0$$
......(2)

From equation (1) and (2) we get

$$A((x_{\alpha}^{**} \Rightarrow x_{\alpha})^*, 0) = 1$$

Thus $x_{\alpha}^{**} \Rightarrow x_{\alpha} \in D_{(B,A)}$.

Corollary 3.1

Let (B, A) be a BADFL and $x_{\alpha}, y_{\alpha} \in B$ such that $A(x_{\alpha}^{**}, y_{\alpha}^{**}) = 1$. Then there exists $d_{\alpha} \in D_{(B,A)}$ such that $A(x_{\alpha} \wedge d_{\alpha} \wedge m_e, y_{\alpha} \wedge d_{\alpha} \wedge m_e) = 1$.

Proof. Let $x_{\alpha}, y_{\alpha} \in B$ by above theorem, there exist $d_{\alpha_1}, d_{\alpha_2} \in D_{(B,A)}$ such that $A(x_{\alpha} \land A)$ m, $x_{\alpha}^{\ **} \wedge d_{\alpha_1}$) = 1 and $A(y_{\alpha} \wedge m$, $y_{\alpha}^{\ **} \wedge d_{\alpha_2})$ = 1.

Let
$$A(d_{\alpha}, d_{\alpha_1} \wedge d_{\alpha_2}) = 1$$
.

Then d is dense element of B and

$$A(x_{\alpha} \wedge d_{\alpha} \wedge m_{e}, x_{\alpha} \wedge m_{e} \wedge d_{\alpha}) = A(x_{\alpha} \wedge d_{\alpha} \wedge m_{e}, d_{\alpha_{1}} \wedge d_{\alpha_{1}} \wedge d_{\alpha_{2}})$$

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

$$= A(x_{\alpha} \wedge d_{\alpha} \wedge m_{e}, y_{\alpha}^{**} \wedge d_{\alpha_{1}} \wedge d_{\alpha_{2}})$$

$$= A(x_{\alpha} \wedge d_{\alpha} \wedge m_{e}, y_{\alpha}^{**} \wedge d_{\alpha_{2}} \wedge d_{\alpha_{1}})$$

$$= A(x_{\alpha} \wedge d_{\alpha} \wedge m_{e}, y_{\alpha}^{**} \wedge d_{\alpha_{2}} \wedge d_{\alpha_{2}} \wedge d_{\alpha_{1}})$$

$$= A(x_{\alpha} \wedge d_{\alpha} \wedge m_{e}, y_{\alpha} \wedge m_{e} \wedge d_{\alpha_{1}} \wedge d_{\alpha_{2}})$$

$$= A(x_{\alpha} \wedge d_{\alpha} \wedge m_{e}, y_{\alpha} \wedge m_{e} \wedge d_{\alpha})$$

$$= A(x_{\alpha} \wedge d_{\alpha} \wedge m_{e}, y_{\alpha} \wedge d_{\alpha} \wedge m_{e})$$

$$= A(x_{\alpha} \wedge d_{\alpha} \wedge m_{e}, y_{\alpha} \wedge d_{\alpha} \wedge m_{e})$$

$$= 1$$

Theorem 3.4

Let (B,A) be a BADFL with maximal element m Define $\alpha_f:(B,A)\to(B^*,A)$ by $(\alpha_f(x_\alpha), x_\alpha^{**}) = 1, x_\alpha \in B$. Then α_f is an fuzzy epimorphism.

Proof. For any x_{α} , $y_{\alpha} \in B$, we have

$$A((x_{\alpha} \Rightarrow y_{\alpha})^{**}, [(x_{\alpha} \Rightarrow y_{\alpha}) \land m_{e}]^{**}) = A((x_{\alpha} \Rightarrow y_{\alpha})^{**}, [(x_{\alpha} \Rightarrow y_{\alpha}) \land (x_{\alpha} \Rightarrow m_{e})]^{**})$$

$$= A((x_{\alpha} \Rightarrow y_{\alpha})^{**}, [x_{\alpha} \Rightarrow (y_{\alpha} \land m_{e})]^{**})$$

$$= A((x_{\alpha} \Rightarrow y_{\alpha})^{**}, [x_{\alpha} \Rightarrow (y_{\alpha}^{**} \land d_{\alpha})]^{**})$$

for some dense elements d_{α} in B.

$$= A((x_{\alpha} \Rightarrow y_{\alpha})^{**}, [(x_{\alpha} \Rightarrow y_{\alpha}^{**}) \land (x_{\alpha} \Rightarrow d_{\alpha})]^{**})$$

$$= A((x_{\alpha} \Rightarrow y_{\alpha})^{**}, (x_{\alpha} \Rightarrow y_{\alpha}^{**})^{**} \land (x_{\alpha} \Rightarrow d_{\alpha})^{**})$$

$$= A((x_{\alpha} \Rightarrow y_{\alpha})^{**}, (x_{\alpha} \Rightarrow y_{\alpha}^{**})^{**} \land m_{e})$$

$$= A((x_{\alpha} \Rightarrow y_{\alpha})^{**}, (x_{\alpha}^{**} \Rightarrow y_{\alpha}^{**}) \land m_{e})$$

$$= A((x_{\alpha} \Rightarrow y_{\alpha})^{**}, x_{\alpha}^{**} \Rightarrow y_{\alpha}^{**})$$

$$\Rightarrow A\left(\alpha_f(x_\alpha \Rightarrow y_\alpha), \alpha_f(x_\alpha) \Rightarrow \alpha_f(y_\alpha)\right) = 1$$

Thus α_f is an epimorphism from theorem 3.2

Theorem 3.5

Let (B, A) be a BADFL and x_{α} be an element of B. Then x_{α} is dense if and only if there is an element y_{α} of B such that $A(x_{\alpha} \wedge m_e, y_{\alpha}^{**} \Rightarrow y_{\alpha}) = 1$.

Proof. Assume x_{α} is a dense element of B. Then

$$A(x_{\alpha}^{**} \Rightarrow x_{\alpha}, m_{e} \Rightarrow x_{\alpha}) = A(x_{\alpha}^{**} \Rightarrow x_{\alpha}, m_{e} \land (m_{e} \Rightarrow x_{\alpha}))$$

$$= A(x_{\alpha}^{**} \Rightarrow x_{\alpha}, m_{e} \land m_{e} \land x_{\alpha})$$

$$= A(x_{\alpha}^{**} \Rightarrow x_{\alpha}, x_{\alpha} \land m_{e})$$

$$= 1.$$

Conversely assume that $A(x_{\alpha} \land m_e, y_{\alpha}^{**} \Rightarrow y_{\alpha})$ for some $y_{\alpha} \in B$. Then from the proof of theorem 3.3. we have $A(x_{\alpha} \wedge m_e, y_{\alpha}^{**} \wedge y_{\alpha}) = 1$, (i.e.) $y_{\alpha}^{**} \Rightarrow y_{\alpha}$ is a dense element of B so that $x_{\alpha} \wedge m_{e}$ is a dense element of B and hence x_{α} is a dense element of B. Since $A(x_{\alpha}^*, (x_{\alpha} \wedge m_e)^*) = 1.$

Definition 3.2

Let (B, A) be a BADFL and $\phi: (B^*, A) \times (B, A) \rightarrow (B, A)$ be a map such that

- $f_a:(B,A)\to (B,A)$ defined by $A(f_a(d_\alpha),f(a_\alpha,d_\alpha))=1$ is an fuzzy endomorphism. (i)
- $A\left(f(a_{\alpha} \wedge b_{\alpha}, d_{\alpha}), f(a_{\alpha}, f(b_{\alpha}, d_{\alpha}))\right) = 1$ (ii)

ISSN: 2094-0343 2326-9865

- (iii) If $A(a_{\alpha}, b_{\alpha}) > 0$ then $A(f(b_{\alpha}, d_{\alpha}), f(a_{\alpha}, d_{\alpha})) > 0$
- (iv) $A(f(0, d_{\alpha}), m_e) = 1, A(f(m_e, d_{\alpha}), d_{\alpha}) = 1$ for any $a_{\alpha}, b_{\alpha} \in B^*$ and $d_{\alpha} \in B$. Then f is said to be an admissible map.

Definition 3.3

Let (B,A) be a BADFL and $f:(B^*,A)\times(B^*,A)\to(B,A)$ be an admissible map. Define the relation θ_f on $(B^*,A)\times(B,A)$ by $(a_\alpha,d_\alpha)\theta_f(b_\alpha,e_\alpha)\Leftrightarrow A(a_\alpha,b_\alpha)=1$ and $A\big(f(a_\alpha,d_\alpha\wedge m_e),f(a_\alpha,e_\alpha\wedge m_e)\big)=1$. Then θ_f is an equivalence relation on $(B^*,A)\times(B,A)$. We denote the equivalence class $\frac{(a,d)}{\theta_f}$ by $[a_\alpha,d_\alpha]_f$.

Lemma 3.1

Let (B,A) be an BADFL. Then for any $a_{\alpha},b_{\alpha}\in B^*$ and $d_{\alpha},e_{\alpha}\in B$. $A(b_{\alpha},a_{\alpha})>0$ and $A\big(f(a_{\alpha},d_{\alpha}\wedge m_e),f(a_{\alpha},e_{\alpha}\wedge m_e)\big)=1$. Then $A\big(f\big(b_{\alpha},d_{\alpha}\wedge m_e,f(b_{\alpha},e_{\alpha}\wedge m_e)\big)\big)=1$.

(i) $A([(a_{\alpha}, d_{\alpha}), (b_{\alpha}, e_{\alpha})]) > 0 \Leftrightarrow A(a_{\alpha}, b_{\alpha}) > 0 \text{ and } (f(a_{\alpha}, d_{\alpha} \wedge m_{e}), f(a_{\alpha}, e_{\alpha} \wedge m_{e})) > 0$ **Proof.** Let $A(b_{\alpha}, a_{\alpha}) > 0$ and $A(f(a_{\alpha}, d_{\alpha} \wedge m_{e}), f(a_{\alpha}, e_{\alpha} \wedge m_{e})) = 1$ Now

$$A(f(b_{\alpha}, d_{\alpha} \wedge m_{e}), f(a_{\alpha} \wedge b_{\alpha}, d_{\alpha} \wedge m_{e})) = A(f(b_{\alpha}, d_{\alpha} \wedge m_{e}), f(b_{\alpha}, f(a_{\alpha}, d_{\alpha} \wedge m_{e})))$$

$$= A(f(b_{\alpha}, d_{\alpha} \wedge m_{e}), f(b_{\alpha}, f(a_{\alpha}, e_{\alpha} \wedge m_{e})))$$

$$= A(f(b_{\alpha}, d_{\alpha} \wedge m_{e}), f(b_{\alpha} \wedge a_{\alpha}, e_{\alpha} \wedge m_{e}))$$

$$= A(f(b_{\alpha}, d_{\alpha} \wedge m_{e}), f(a_{\alpha} \wedge b_{\alpha}, e_{\alpha} \wedge m_{e}))$$

$$A(f(b_{\alpha}, d_{\alpha} \wedge m_{e}), f(b_{\alpha}, e_{\alpha} \wedge m_{e})) = 1$$

References

- [1] S. Burris and H. P. Sankappanavar. A course in Universal Algebra. Springer-Verlag, New York, Heidelberg, Berlin, 1981.
- [2] W. C. Nemitz. Implicative semilattices. Jour. Transactions of American Math. Soc., 117:128–142, 1965.
- [3] G. C. Rao. Almost Distributive Lattices. PhD thesis, Department of Mathematics, Andhra University, 1980.
- [4] G. C. Rao and Berhanu Assaye. Closed elements of heyting almost distributive lattices. International journal of Computational Cognition(http://www. IJCCUS), 9(2),2011.
- [5] G. C. Rao and B. Assaye, Implicative filters on heyting almost distributive lattices, Inter. J. Computational Cognition, 8, 55-59.
- [6] A. Berhanu, G. Yohannes and T. Bekalu, Almost Distributive Fuzzy Lattice, International Journal of Mathematics and its Application, 5(1-C), 307-316, 2017.
- [7] A. Berhanu, A. Mihret and T. Gerima, B-Almost Distributive Fuzzy Lattice, Bulletin of the Section of Logic, 47(3), 171–185, 2018.
- [8] U. M. Swamy and G. C. Rao. Almost distributive lattices. Jour. Aust. Math. Soc. (Series A), 31:77–91, 1981.

ISSN: 2094-0343

2326-9865

- [9] K. Rekhalakshmi, V. Maheswari and V. Balaji, Closed elements of B-Almost distributive fuzzy lattices (Communicated).
- [10] L. A. Zadeh, Fuzzy sets. Information and Control, 8(3), 338–353, 1965.
- [11] E. Sanchez, Resolution of composite fuzzy relation equation. Information and Control, 30(1), 38–48, 1976.
- [12] I. Chon, Fuzzy partial order relations and fuzzy lattices. Korean J. Math., 17(4), 361–374, 2009.
- [13] J. A. Goguen, L-fuzzy set. J. Math. Anal. Appl., 18(1), 145–174, 1967.
- [14] G. Rao, B. Assaye and M. Mani, Heyting almost distributive lattices, Inter. J. Computational Cognition, 8(3), 85–89, 2010.
- [15] B. A. Alaba and D. N. Derso, Heyting Almost Distributive Fuzzy Lattices. IJCSAM (International Journal of Computing Science and Applied Mathematics, 4(1), 23-26, 2018.
- [16] G. C. Rao and Berhanu Assaye. Dense elements of heyting almost distributive lattices, International Journal Of Computational Cognition (Http://Www.Ijcc.Us), 9(2), 2011.