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Introduction

In many applications in the life sciences a delay is introduced when there are some hidden
variables and processes, which are not well understood but are known to cause a time-lag [1]. Delay
differential equations (DDEs) are increasingly used in numerous application areas that include
population dynamics (taking into account the gestation and the maturation time), infectious
diseases(accounting for the incubation periods), physiological and pharmaceutical kinetics (modelling, for
example, hematopoiesis and respiration, where the delays are due, respectively,to cell maturation and
blood transport between the lung and brain, etc.), chemical and enzyme kinetics (such as mixing
reactants), biological immune response (in which the antibody pro- duction by the T-cell population
depends on the antigenic stimulation at an earlier time), the navigational control of ships and aircraft
(with, respectively, large and short lags), and more general control problems. We refer to [2-9] for
more examples in biomathematics. The objectof a sensitivity analysis is to determine systematically
the effect of uncertain parameters on system solutions and the effect of the noisy data on the
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certainty to which parameters may be determined; see also [10, 11].

Sensitivity analysis is concerned with the study of the relationship between infinitesimal changes
in model parameters and changes in model outputs. Sensitivity information can be used to estimate
which parameters are most influential in affecting the behavior of the sim- ulation. Such information
is crucial for experimental design, data assimilation, reduction of complex nonlinear models, and
evaluating optimization gradients and Jacobians in the settingof dynamic optimization and parameter
estimation.

Let us consider the following saturated infection rate on a four-dimensional equations with two
delays are as follows: [12]

Lx(t)v(t) x = A—dix(t) -

1+av(t)’
y = BUZTNVEZT) gy -y,
1+ ov(t— 1)
v: = ky(t) — dav(t),
5 _ ry(t = z2)z(t — 12) ) 1)
h+2(t — 72)

where the interaction between activated CD4™ T cells, x(t), infected CD4™ T cells, y(t), viruses, v(t)
and immune cells, z(t). where activated CD4™ T cells are produced at a rate of A cells day 1, decay at
a rate d; day ' and can become infected at a rate that is proportional to the number of infected
CD4™ T cells y(t) with a infection rate constant 8 day ‘cell”™. The infected CD4™ T cells are
assumed to decay at the rate of d> day ! . The CTL responses eliminate at a rate that is
proportional to the number of CTLs with a killing rate constant p day *cell™. Free viruses
produced from infected cells at the rate k, decay at a rate ds; day . The CTLs immune response to the
infection rate vy, d4 is a decay rate of CTLs immune response . We considered

v (H)z(t)
saturated immune response function  h=2z(t)to replace the bilinear rate, here h is a saturation
constant. Namely, we incorporate a time delay 71 to describe the period between healthy cells?
contacting with viruses and complete production of viral RNA and protein. z, represents theperiod
between infected cells and contacting with CTL’s immune cells.

Let Ro = APk . 1tis well known the importance of the value Ro, which is called as
didod
3

the basic reproductive ration of system (1). Denote R yd3di(Ro — where R is called

1)
khds(ady + f)
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immunity-activated reproduction number of system (1). Besides, we can show that if Ry > 1,

system (1) has an immunity-activated equilibrium
Nt
(d2 + pzo)(ydas + adak(h + z2)) da(h+2z2) dak(h+2z2) —b+ A

_—

Pk Y vds 2a
a = dapk(ady + B); b = dsk(adi + p)(d2 + hp) + diuyds;
A = (dsk(ads + p)(d2 + hp) + d1,uyd3)2 + 4d2d42k2hp(adl +ﬁ)2(R1 —1).
Next we conclude the following theorems for proving stability analysis through the steady statepoints

I (X,Y,V02,) 3

Theorem 1. If Ro < 1, lp of model (1) is locally asymptotically stable for any time delay = > O.
If Ro > 1, lo of model (1) is unstable for any time delay z > 0.

The following theorem holds that When Ro > 1, the system (1) has a immunity inactivated
steady state I1 = (X1, Y1, v1, 0)
Theorem 2. If Ry < 1 < Ro, then the immunity inactivated steady state 11 of model (1) is
locally asymptotically stable in the case of z2 = 0. [14]
When R1 < 1 < Ry, the system (1) has a immunity activated steady state 1> = (X2, y2, V2, Z2).
Then the linearized system (1) at I, yields

P2 __ Bx2
u = —du(t)—- u(t)— u (t),
1 1 1+ave * (1 + avz)2
1

pv2 pxz —Hu )y ,
u = ut—z)+ u(t—z)—du (t)— pu
(t)z
2 l+avz 1 L+av)2 1 2 2 2 4 2
1 3 2
us = kuxz(t) - dsus(t),

yy2 Yz2

u = ut-z)+ ut-z)-du (t). 2
4 (h+2)2 (h+22) 2 44
4

From the above Jacobian matrix, we conclude the following theorem

Theorem 3. Suppose

1. Ri>1

. If r1 =0 and 72 > 0, then the infected steady state I> of model (2) is locally asymptotically

stable when 72 < 3. [12]
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2 Parameter sensitivity analysis
The sensitivity and identifiability analysis were done by estimating at each data point the derivative
of the clinical score P = [u1,U2,us,u4]" with respect to the vector parameter q = [d1, W, Kk, d2,
ds,,y,a,h]T. The sensitivities are dimensionless, as they are scaled with respect to the variables
and parameter values. In the following the sensitivity functions with respect toan arbitrary parameter
g, for the system (1) are denoted by,
o RO g 4 3)
Pi,g oq
These sensitivities allow to determine which parameter is least important to the model output and
these least sensitive parameters can be fixed and not used for calibration. There are different approaches
to find the sensitivity functions of DDEs [13]. However, for simplicity we will use the so called
direct approach to find sensitivity functions of system (1).
The corresponding sensitivity system (2), with respect to the parameter “d:’ is as follows,

(u) Lv2 Bx2 (),
= —u (- u(t) — u
1td,? 1+ Ldi(a+ow)2 3di
av2
(U)_pve Bxa  (t—-7,d)-du ()
= (t—7z,d)+ u
u
2 tdi 1+ o2 1,d; 1t @@+ 3,di1 1 2,d1
avz)2 2
—Hu2,41 ()22 — HU241 (D)Y2,
(Us)t,d1 = kuz,d1(t) - daus,d1(t),
(u) Yy2 vz2 (t—7z,d)—du (). (4)
= (t—7z,d)+ u
u
4tdi(h+2)2  4di? o(h+ 2d:2 1 40
22) 4
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The corresponding sensitivity system (2), with respect to the parameter “dz’ is as follows,
= —duu Lv2 Lx2
(Un)t,d2 O 1hgy O qrguy O
1, U 1, U 3,
d2 d2 dz
(Uu)_pv2 Lx2 (t—7z,d)—u (b
= (t—z,d)+ u
u
2 tdr1+ov2 1,d,1 2 1+ 3,d>1 2 2
avo)2
—Hu2,42(t)z2 — Huz,a2(t)y2,
(U3)t,d2 = Kuz,a2(t) - dzuz,a2(t),
(u) V2 yz2 (t—z,d)—du ().
= (t -7.,d ) + u
u
4 t.d, (h + 22)2 4,d, 2 2 (h+ 2d22 2 4.d,
22) 4

The corresponding sensitivity system (2), with respect to the parameter ‘ds’ is as follows,

= —du pv2 [x2
(U)t,d3 - ® - o (D),
’ 1 +
L ow 1 1+oan) 3
u u
ds ds ds
(Uu)_pvo [x2 t-z,d)-du (t)
= t—z7,d)+ u
u
2 tdz31l+ vz 1,dst 3 1+ 3.ds1l 3 2.,ds3
ov2)2 2
~HU2,43()22 — pu2a3(D)y2,
(Us)t,d3 = kuzq3(t) - us(t),
(u) VY2 yz2 (t—z,d)—du ().
= t—z7,d)+ u
u
4tds(h+2)2  4ds? 5 (h+ 2,d3 2 3
Zz)
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4,d3
The corresponding sensitivity system (2), with respect to the parameter ‘4’ is as follows,
= —duu Vo X2
(U)sp (O ® - o (O,
) 1 +
1 on 1 Q+an) 3
u u
p s p
(u) Vo X2 (t—z,p—du (V)
= (t -1 !ﬂ) +
u u
211+ o2 1,5 1(1+av2)2 3.p 12 2,8
—Huz4(t)z2 — pu2 4(1)y2, (Us)z,p = kuz(t) — dzus4(D),
(u) Yv2 yZ2 t-7.p)-du (V). (7)
= (t -7 !ﬂ) +
u u
4tBh+2)2 48  2(h+2z) 2 24 4P
The corresponding sensitivity system (2), with respect to the parameter ‘o’ is as follows,
Bovo BaPX2
(U1)s, e = it U T2 Ve,
oV Loa®Xz
av2
(u2)t,a = - 1+ v, Ui,a(t—71,a) W)Z Us,a(t — 71, a) — dauz «(t)
—HU2,(1)Z2 — HU2«(1)Y2,
(Uz)z, 0t = Kuz,4(t) — daus,q(t),
(u) %) Yz2 t—7z,a0)—du (b). (8)
= t—7z,0)+
u u
4 ta(h+22)2 4,a 2(h+22) 2,0 24 4,0
2403
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The corresponding sensitivity system (2), with respect to the parameter ‘W’ is as follows,
Bv2 Bx2
()= —u()- u(t) - u(t),
Ttpt 1+ 1LH@+aw)2 3H
av2
(u)_pve [x2 t—-7z,0)—du (b
= (t—7z, W+
u u
2tul+ a2 1,u 1(1+0W2)2 3,1 12 2,u
—U2(t)z2 — uz(t)ya,
(Us)t,p = kuzpu(t) - dsus,u(t),
(u) YVv2 yz2 (t—z,0)—du (t). 9)
= (t—z, W+
u u
4 tu(h + 22)2 4p  2(h+zz) 214 24 4,u
The corresponding sensitivity system (2), with respect to the parameter ‘k’ is as follows,
(Uu)_pve [x2 (1),
= —u () - u(t) — u
1tk?t 1+ lk@+aw)2 3k
av?2
(U)_pBve Bx>  (t—7,k)—du (1)
= (t—7,k+
u u
2tkl+ av2 1,k 1(1+aw)2 3,k 12 2k
—uz(t)z2 — uz(t)y2,
(Us)t,k = uz(t) - dsusk(t),
(u) VVv2 yz2 (t—7,k)—du (). (10)
= (t—7,k)+
u u
4t,k(h+22)2 4 k 2(h+22) 2.k 24 4k
The corresponding sensitivity system (2), with respect to the parameter ‘y’ is as follows,
(U)_pvo Bx2 (0,
= —u(t)- u(t) — u
1 Ly 1 1y 1+ av2
Vol. 71 No. 4 (2022) 2404

http://philstat.org.ph



Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

2326-9865
(1 + avy)2 3y
(U)_pBvo [x2 (t—z,y)—du (1)
= (t -7, V) +
u u
2tyl+av: 1y 1 (1+ av2)2 3,y 12 2y
—uz(t)z2 — uz(t)y2,
(Us)z,y = uz(t) — daus, (1),
(u) Y2 _ 22 (t—z,y)—du (). (11)
= uft-—rz,y+
u
The corresponding sensitivity system (2), with respect to the parameter ‘h’ is as follows,
(U)_pve Lxz2 (1),
= —u () - u(t) — u
1th? 1+ lh@+anp)?2 3h
av?2
(U)_Bve Bxz  (t—7,h)y—-du (1)
= (t—7z,h)+
u u
2thl+ave 1,h 1(1 + av2)2 3,h 12 2,h
—uz(t)z2 — uz(t)y2,
(Us)t,h = u2(t) - dzsusn(t),
yh?y2 —vhzz
(U'4)t,h = (h+2 )2 us(t — z2,h) — (h+z )Uz,h(t — 72, h) — dauan(t). (12)
2 2

The semi-relative sensitivity solutions (depicted in Figures. 1- 32) are calculated by simply
multiplying the unmodified sensitivity solutions by a chosen parameter which provides informa- tion
concerning the amount the state will change when that parameter is doubled. It is bestto calculate
this type of sensitivity solution to obtain a more thorough understanding of the dynamics. Sensitivity
results are obtained and its shown in the following Figures.
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Fig. 1-4 shows the semi-relative sensitivity analysis for the system (4) for d1 = 0.02 respec-
tively.
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Fig. 5-8 shows the semi-relative sensitivity analysis for the system (5) for d2 = 0.8 respec-
tively.

From Fig.1-4 and 5-8 the parameters ‘d:” and d. are very sensitive in the free virus cells.
However, those parameters are inversely proportional to increasing the initial function, and they are very
sensitive in the early time intervals. In terms of the parameter, d> decreases with the initial function
and is extremely sensitive in activated CD4 + T cells.
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Fig. 9-12 shows the semi-relative sensitivity analysis for the system (6) for ds = 1.5 respec-
tively.

According to Fig.9-12, the parameter ds is extremely sensitive in free virus cells. However, in-
creasing the initial function has a negative proportional effect on this parameter, and it is very
sensitive in the early time intervals. In terms of the parameter, ds decreases with the initial function
and is extremely sensitive in activated CD4 + T cells.
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Fig. 13-16 show the semi-relative sensitivity analysis for the system (7) for g = 0.001
respectively.

From Fig. 13-16, the parameters f are sensitive in the early time intervals and their sensitivity
decreases by time to be insensitive in all cells.
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Fig. 17-20 shows that the semi-relative sensitivity analysis for the system (8) for ¢ = 0.3
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Fig. 21-24 show the semi-relative sensitivity analysis for the system (10) for k = 2 values
respectively.

The parameters o and k are inversely proportional to increasing the initial function, as shownin Figs.
17-20 and 21-24, and they are very sensitive in the early time intervals.
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Fig. 25-28 show the semi-relative sensitivity analysis for the system (11) for y = 0.025 re-
spectively.
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Fig. 29-32 shows that the semi-relative sensitivity analysis for the system (12) for h =0.1
respectively.

From Fig. 25-28 and 29-32, the parameters y and h are sensitive in the early time intervalsand
their sensitivity decreases by time to be insensitive in all cells.

Also from the above plots, we observe that a small change in any parameter can produce
significant changes in the levels of the system (4-12). The parameters g, y, and hplay an impor- tant role
in the model dynamics here. since it is very insensitive to all cells. As a result, a smallchange in the
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level of infection rate f’, immune response to infection rate y, and saturation constant h has no effect

on that parameter. The size of the perturbation should be selected with care when determining the
effect of the parameter on the outputs.

3 Conclusion

In this paper, we have incorporated time delays into our HIV-1 dynamic model. Special em- phasis
was given to investigate the sensitivity of HIVV-1 model due to perturbing the parametersappearing in
the model and the initial conditions of the model using the direct approach. For using these analysis,
we can easily see that the infection rate parameter g,y and h play a vitalrole in the model dynamics.
The sensitivity functions are useful to evaluate which parametershave a significant uncertainty effect
in the HIV-1 viral dynamics model.
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