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Abstract 

Recently, a large number of mathematical models that are described by 

delay differential equations (DDEs) have appeared in the life sciences. This 

is an article to show that delay differential models have a richer 

mathematical framework (compared with models without memory or after-

effects) and a better consistency with biological phenomena such as      

dynamical diseases and cell growth dynamics. In this paper, we present a 

delay differential model to describe the HIV-1 dynamics model with a 

CTL immune response with two time delays. We performed a sensitivity 

analysis of the HIV-1 dynamics model that reveals the parameter values 

have a major impact on the model dynamics. Our goal is to determine 

which parameter has the greatest influence on model dynamics and can be 

verified using graphs. 

Keywords: HIV-1 Model, Delays, Sensitivity analysis. 
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1 Introduction 

In many applications in the life sciences a delay is introduced when there are some hidden 

variables and processes, which are not well understood but are known to cause a time-lag [1]. Delay 

differential equations (DDEs) are increasingly used in numerous application areas that include 

population dynamics (taking into account the gestation and the maturation time),  infectious 

diseases(accounting for the incubation periods), physiological and pharmaceutical kinetics  (modelling, for 

example, hematopoiesis and respiration, where the delays are due, respectively, to cell maturation and 

blood transport between the lung and brain, etc.), chemical and enzyme kinetics (such as mixing 

reactants), biological immune response (in which the antibody pro- duction by the T-cell population 

depends on the antigenic stimulation at an earlier time), the navigational control of ships and aircraft 

(with, respectively, large and short lags), and more general control problems. We refer to [2–9] for 

more examples in biomathematics. The object of a sensitivity analysis is to determine systematically 

the effect of uncertain parameters on system solutions and the effect of the noisy data on the 
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certainty to which parameters may be determined; see also [10, 11]. 

Sensitivity analysis is concerned with the study of the relationship between infinitesimal changes 

in model parameters and changes in model outputs. Sensitivity information can be used to estimate 

which parameters are most influential in affecting the behavior of the sim- ulation. Such information 

is crucial for experimental design, data assimilation, reduction of complex nonlinear models, and 

evaluating optimization gradients and Jacobians in the setting of dynamic optimization and parameter 

estimation. 

Let us consider the following saturated infection rate on a four-dimensional equations with two 

delays are as follows: [12] 

βx(t)v(t) ẋ =    λ − d1x(t) − 
1 + αv(t) 

, 

y˙ = 
βx(t − τ1)v(t − τ1) 

− d y(t) − µy(t)z(t), 

1 + αv(t − τ1) 

v  ̇ =   ky(t) − d3v(t), 

ż = 
γy(t − τ2)z(t − τ2) 

− d  z(t). (1) 

h + z(t − τ2) 

 

where the interaction between activated CD4+ T cells, x(t), infected CD4+ T cells, y(t), viruses, v(t) 

and immune cells, z(t).  where activated CD4+ T cells are produced at a rate of λ cells day−1, decay at 

a rate d1 day−1 and can become infected at a rate that is proportional to the number of infected 

CD4+ T cells y(t) with a infection rate constant β day−1cell−1.  The infected CD4+ T cells are 

assumed to decay at the rate of d2 day−1 . The CTL responses eliminate at a rate that is 

proportional to the number of CTLs with a killing rate constant µ day−1cell−1. Free viruses 

produced from infected cells at the rate k, decay at a rate d3 day−1. The CTLs immune response to the 

infection rate γ, d4 is a decay rate of CTLs immune response . We considered 

γy(t)z(t) 

saturated immune response function h + z(t) to replace the bilinear rate, here h is a saturation 

constant. Namely, we incorporate a time delay τ1 to describe the period between healthy cells? 

contacting with viruses and complete production of viral RNA and protein. τ2 represents the period 

between infected cells and contacting with CTL’s immune cells. 

 

Let R0 = λβk 

d1d2d

3 

.   It is well known the importance of the value R0, which is called as 

the basic reproductive ration of system (1). Denote R1 
=  

γd3d1(R0 − 

1) 

khd4(αd1 + β) 

where R1 is called 
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immunity-activated reproduction number of system (1). Besides, we can show that if R1 > 1, 

system (1) has an immunity-activated equilibrium 

I  (x  , y  , v  , z  ) = 

 
(d2 + µz2)(γd3 + αd4k(h + z2)) 

, 
d4(h + z2) 

, 
d4k(h + z2) 

, 
−b + 

√
∆
!

 

 

a = d4µk(αd1 + β); b = d4k(αd1 + β)(d2 + hµ) + d1µγd3; 

∆ = (d4k(αd1 + β)(d2 + hµ) + d1µγd3)
2 + 4d2d4

2k2hµ(αd1 + β)2(R1 − 1). 

Next we conclude the following theorems for proving stability analysis through the steady state points 

 

Theorem 1. If R0 < 1, I0 of model (1) is locally asymptotically stable for any time delay τ > 0. 

If R0 > 1, I0 of model (1) is unstable for any time delay τ > 0.   

The following theorem holds that When R0 > 1, the system (1) has a immunity inactivated 

steady state I1 = (x1, y1, v1, 0) 

Theorem 2. If R1 < 1 < R0, then the immunity inactivated steady state I1 of model (1) is 

locally asymptotically stable in the case of τ2 = 0. [14] 

When R1 < 1 < R0, the system (1) has a immunity activated steady state I2 = (x2, y2, v2, z2). 

Then the linearized system (1) at I2 yields 

   βv2    βx2  

u̇ =    −d  u  (t) − u  (t) − u  (t), 

1 1  

1 

1 + αv2 
1 

(1 + αv2)2   3 

   βv2    βx2  

u̇ = u  (t − τ  ) + u  (t − τ  ) − d  u  (t) − µu  

(t)z 

— µu (t)y , 

2 1 + αv2 
1 

1 (1 + αv2)2   

3
 

1 2  

2 

2 2 4 2 

u̇3 =    ku2(t) − d3u3(t), 

  γy2  γz2  

u̇ = u  (t − τ  ) + u  (t − τ  ) − d  u  (t). (2) 

4 (h + z2)2   

4
 

2 (h + z2)  
2 

2 4  4 

From the above Jacobian matrix, we conclude the following theorem 

Theorem 3. Suppose 

1. R1 > 1 

2. If τ1 = 0 and τ2 > 0, then the infected steady state I2 of model (2) is locally asymptotically 

stable when τ2 < τ2
∗. [12] 
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2 Parameter sensitivity analysis 

The sensitivity and identifiability analysis were done by estimating at each data point the derivative  

of  the  clinical  score  P  =  [u1, u2, u3, u4]T  with  respect  to  the  vector  parameter  q  = [d1, µ, k, d2, 

d3, β, γ, α, h]T .  The  sensitivities  are  dimensionless,  as  they  are  scaled  with  respect to the variables 

and parameter values. In the following the sensitivity functions with respect to an arbitrary parameter 

q, for the system (1) are denoted by, 

 

Pi,q 
= 

∂Pi(t) 
, i = 1, ...4 (3) 

∂q 

These sensitivities allow to determine which parameter is least important to the model output and 

these least sensitive parameters can be fixed and not used for calibration. There are different  approaches 

to find the sensitivity functions of DDEs [13]. However, for simplicity we will use the so called 

direct approach to find sensitivity functions of system (1). 

The corresponding sensitivity system (2), with respect to the parameter ‘d1’ is as follows, 

(u̇  )    βv2  

=   −u (t) − u 

  βx2  

(t) − u 

(t), 

1 t,d1 
1 1 + 

αv2 

1,d1 (1 + αv2)2 3,d1 

(u̇  )    βv2  

=

 

u 

  βx2  

(t − τ , d ) + u 

(t − τ , d ) − d u (t) 

2 t,d1 1 + αv2 1,d1 
1 1 (1 + 

αv2)2 

3,d1 1 1

 2 

2,d1 

−µu2,d1 (t)z2 − µu2,d1 (t)y2, 

(u̇3)t,d1 =    ku2,d1 (t) − d3u3,d1 (t), 

(u̇  )   γy2  

=

 

u 

    γz2  

(t − τ , d ) + u 

(t − τ , d ) − d u (t). (4) 

4 t,d1 (h + z2)2 4,d1 
2 1 (h + 

z2) 

2,d1 2 1

 4 

 

 

4,d1 
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The corresponding sensitivity system (2), with respect to the parameter ‘d2’ is as follows, 

 

(u̇1)t,d2 

=  −d1u  

 

1,

d2 

   βv2  

(t) − 
1 + αv 

u 

 

 

1,

d2 

  βx2  

(t) − 
(1 + αv )2 

u
 

 

 

3,

d2 

 

(t), 

(u̇  )    βv2  

=

 

u 

  βx2  

(t − τ , d ) + u 

(t − τ , d ) − u (t) 

2 t,d2 1 + αv2 1,d2 
1 2 (1 + 

αv2)2 

3,d2 1 2 2 

−µu2,d2 (t)z2 − µu2,d2 (t)y2, 

(u̇3)t,d2 =    ku2,d2 (t) − d3u3,d2 (t), 

(u̇  )   γy2  

=

 

u 

    γz2  

(t − τ , d ) + u 

(t − τ , d ) − d u (t). (5) 

4 t,d2 (h + z2)2 4,d2 
2 2 (h + 

z2) 

2,d2 2 2

 4 

4,d2 

 

The corresponding sensitivity system (2), with respect to the parameter ‘d3’ is as follows, 

 

(u̇1)t,d3 

=  −d1u  

 

1,

d3 

   βv2  

(t) − 
1 + αv 

u 

 

 

1,

d3 

  βx2  

(t) − 
(1 + αv )2 

u
 

 

 

3,

d3 

 

(t), 

(u̇  )    βv2  

=

 

u 

  βx2  

(t − τ , d ) + u 

(t − τ , d ) − d u (t) 

2 t,d3 1 + αv2 1,d3 
1 3 (1 + 

αv2)2 

3,d3 1 3

 2 

2,d3 

−µu2,d3 (t)z2 − µu2,d3 (t)y2, 

(u̇3)t,d3 =    ku2,d3 (t) − u3(t), 

(u̇  )   γy2  

=

 

u 

    γz2  

(t − τ , d ) + u 

(t − τ , d ) − d u (t). (6) 

4 t,d3 (h + z2)2 4,d3 
2 3 (h + 

z2) 

2,d3 2 3 4 
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2 2 

4,d3 

 

The corresponding sensitivity system (2), with respect to the parameter ‘β’ is as follows, 

 

(u̇1)t,β 

=  −d1u  

 

1

,

β 

  v2  

(t) − 
1 + αv 

u 

 

 

1

,

β 

  x2  

(t) − 
(1 + αv )2 

u
 

 

 

3

,

β 

 

(t), 

(u̇  )   v2  

=

 

u 

  x2  

(t − τ , β) +

 

u 

(t − τ , β) − d u (t) 

2 t,β 1 + αv2 1,β 1 (1 + αv2)2 3,β 1 2  2,β 

−µu2,β(t)z2 − µu2,β(t)y2, (u̇3)t,β =    ku2,β(t) − d3u3,β(t), 

(u̇  )   γy2  

=

 

u 

    γz2  

(t − τ , β) +

 

u 

(t − τ , β) − d u (t). (7) 

4 t,β (h + z2)2 4,β 2 (h + z2) 2,β 2 4  4,β 

The corresponding sensitivity system (2), with respect to the parameter ‘α’ is as follows, 

  βαv2   

(u̇1)t,α =    −d1u1,α(t) + 
1 + 

αv
 

  βαv2   

βα2x2 

u1,α(t) − 
(1 + αv )2 u3,α(t), 

βα2x2 

(u̇2)t,α =    − 
1 + αv  

u1,α(t − τ1, α) + 
(1 + αv  )2 u3,α(t − τ1, α) − d2u2,α(t) 

−µu2,α(t)z2 − µu2,α(t)y2, 

(u̇3)t,α =    ku2,α(t) − d3u3,α(t), 

(u̇  )   γy2  

=

 

u 

    γz2  

(t − τ , α) +

 

u 

(t − τ , α) − d u (t). (8) 

4 t,α (h + z2)2 4,α 2 (h + z2) 2,α 2 4   4,α 

2 
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The corresponding sensitivity system (2), with respect to the parameter ‘µ’ is as follows, 

 

 

(u̇  ) 

   βv2  

=   −u (t) − u 

  βx2  

(t) − u 

 

(t), 

1 t,µ 
1 1 + 

αv2 

1,µ (1 + αv2)2 3,µ 

(u̇  )    βv2  

=

 

u 

  βx2  

(t − τ , µ) +

 

u 

(t − τ , µ) − d u (t) 

2 t,µ 1 + αv2 1,µ 1 (1 + αv2)2 3,µ 1 2   2,µ 

−u2(t)z2 − u2(t)y2, 

(u̇3)t,µ =    ku2,µ(t) − d3u3,µ(t), 

(u̇  )   γy2  

=

 

u 

    γz2  

(t − τ , µ) +

 

u 

(t − τ , µ) − d u (t). (9) 

4 t,µ (h + z2)2 4,µ 2 (h + z2) 2,µ 2 4   4,µ 

The corresponding sensitivity system (2), with respect to the parameter ‘k’ is as follows, 

(u̇  )    βv2  

=   −u (t) − u 

  βx2  

(t) − u 

(t), 

1 t,k 
1 1 + 

αv2 

1,k (1 + αv2)2 3,k 

(u̇  )    βv2  

=

 

u 

  βx2  

(t − τ , k) +

 

u 

(t − τ , k) − d u (t) 

2 t,k 1 + αv2 1,k 1 (1 + αv2)2 3,k 1 2  2,k 

−u2(t)z2 − u2(t)y2, 

(u̇3)t,k =    u2(t) − d3u3,k(t), 

(u̇  )   γy2  

=

 

u 

    γz2  

(t − τ , k) +

 

u 

(t − τ , k) − d u (t). (10) 

4 t,k (h + z2)2 4,k 2 (h + z2) 2,k 2 4  4,k 

The corresponding sensitivity system (2), with respect to the parameter ‘γ’ is as follows, 

(u̇  )    βv2  

=   −u (t) − u 

  βx2  

(t) − u 

(t), 

1 t,γ 
1 1 + αv2 1,γ 
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(1 + αv2)2 3,γ 

(u̇  )    βv2  

=

 

u 

  βx2  

(t − τ , γ) +

 

u 

(t − τ , γ) − d u (t) 

2 t,γ 1 + αv2 1,γ 1 (1 + αv2)2 3,γ 1 2  2,γ 

−u2(t)z2 − u2(t)y2, 

(u̇3)t,γ =    u2(t) − d3u3,γ(t), 

(u̇  )   y2    z2  

= u (t − τ , γ) +

 u 

(t − τ , γ) − d u (t). (11) 

4 t,γ (h + z2)2   4 2
 
(h + z2) 2,γ 2 4  4,γ 

The corresponding sensitivity system (2), with respect to the parameter ‘h’ is as follows, 

(u̇  )    βv2  

=   −u (t) − u 

  βx2  

(t) − u 

(t), 

1 t,h 
1 1 + 

αv2 

1,h (1 + αv2)2 3,h 

(u̇  )    βv2  

=

 

u 

  βx2  

(t − τ , h) +

 

u 

(t − τ , h) − d u (t) 

2 t,h 1 + αv2 1,h 1 (1 + αv2)2 3,h 1 2  2,h 

−u2(t)z2 − u2(t)y2, 

(u̇3)t,h =    u2(t) − d3u3,h(t), 

γh2y2 

 

 

   γhz2  

(u̇4)t,h = 
(h + z )2 u4(t − τ2, h) − 

(h + z ) 
u2,h(t − τ2, h) − d4u4,h(t). (12) 

2 2 

 

The semi-relative sensitivity solutions (depicted in Figures. 1- 32) are calculated by simply 

multiplying the unmodified sensitivity solutions by a chosen parameter which provides informa- tion 

concerning the amount the state will change when that parameter is doubled. It is best to calculate 

this type of sensitivity solution to obtain a more thorough understanding of the dynamics. Sensitivity 

results are obtained and its shown in the following Figures. 
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Fig. 1-4 shows the semi-relative sensitivity analysis for the system (4) for d1 = 0.02 respec- 

tively. 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

2407 

 

 

 

Vol. 71 No. 4 (2022) 
http://philstat.org.ph 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 5-8 shows the semi-relative sensitivity analysis for the system (5) for d2 = 0.8 respec- 

tively. 

 

From Fig.1-4 and 5-8 the parameters ‘d1’ and d2 are very sensitive in the free virus cells. 

However, those parameters are inversely proportional to increasing the initial function, and they are very 

sensitive in the early time intervals. In terms of the parameter, d2 decreases with the initial function 

and is extremely sensitive in activated CD4 + T cells. 
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Fig. 9-12 shows the semi-relative sensitivity analysis for the system (6) for d3 = 1.5 respec- 

tively. 

 

According to Fig.9-12, the parameter d3 is extremely sensitive in free virus cells. However, in- 

creasing the initial function has a negative proportional effect on this parameter, and it is very 

sensitive in the early time intervals. In terms of the parameter, d3 decreases with the initial function 

and is extremely sensitive in activated CD4 + T cells. 
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Fig. 13-16 show the semi-relative sensitivity analysis for the system (7) for β = 0.001 

respectively. 

 

From Fig. 13-16, the parameters β are sensitive in the early time intervals and their sensitivity 

decreases by time to be insensitive in all cells. 
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Fig. 17-20 shows that the semi-relative sensitivity analysis for the system (8) for α = 0.3 

respectively. 
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Fig. 21-24 show the semi-relative sensitivity analysis for the system (10) for k = 2 values 

respectively. 

 

The parameters α and k are inversely proportional to increasing the initial function, as shown in Figs. 

17-20 and 21-24, and they are very sensitive in the early time intervals. 
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Fig. 25-28 show the semi-relative sensitivity analysis for the system (11) for γ = 0.025 re- 

spectively. 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

2413 

 

 

 

Vol. 71 No. 4 (2022) 
http://philstat.org.ph 
 
 
 

 

  

 

  

 

  

 

 

  
 

Fig. 29-32 shows that the semi-relative sensitivity analysis for the system (12) for h = 0.1 

respectively. 

 

From Fig. 25-28 and 29-32, the parameters γ and h are sensitive in the early time intervals and 

their sensitivity decreases by time to be insensitive in all cells. 

Also from the above plots, we observe that a small change in any parameter can produce 

significant changes in the levels of the system (4-12). The parameters β, γ, and hplay an impor- tant role 

in the model dynamics here. since it is very insensitive to all cells. As a result, a small change in the 
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level of infection rate β’, immune response to infection rate γ, and saturation constant h has no effect 

on that parameter. The size of the perturbation should be selected with care when determining the 

effect of the parameter on the outputs. 

 

3 Conclusion 

In this paper, we have incorporated time delays into our HIV-1 dynamic model. Special em- phasis 

was given to investigate the sensitivity of HIV-1 model due to perturbing the parameters appearing in 

the model and the initial conditions of the model using the direct approach. For using these analysis, 

we can easily see that the infection rate parameter β, γ and h play a vital role in the model dynamics. 

The sensitivity functions are useful to evaluate which parameters have a significant uncertainty effect 

in the HIV-1 viral dynamics model. 
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