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Introduction
This work is concerned with A(z)-harmonic tasks. The answer to the Beltrami equation

", )0f (2)

7 05,0

1)
Known as the analytical task of A(z). It is widely knowledge that the link between equation (1)
and Quasiconformal mappings is direct. There is a common misconception that A(z) is a measu-
rable task and that | A (z)|C1 virtually anyin which in the area DC. Actual part of the Equation
for the Solution (1)

u(z) = Ref(2)

The composition comprises of an opening and three body paragraphs. In the first paragraph, we
provide a basic overview of the A(z)- analytic tasks, which will be covered in greater detail in
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subsequent sections on the A(z)- harm-onic task. In the next paragraph, we define A ( z ) harm-
onic tasks, introduce the comparable Laplace operator A A u, and describe the taskal features,
Poisson integral formula, and mean value theorem for A(z)-harmonic tasks. The third paragraph
discusses Harnack's inequality and theorem on monoto-nically sequences of A(z)-harmonic tasks

U € hy(D)

Preliminary information

Both the solution to equation (1) and the quasiconformal homeomorphisms of Flat areas have
been thoroughly investigated. We limit ourselves here to work citations ([1, 6, 8, and 11]) and
the formulation of the three theorems given below:

First theorem: For each complex-measurable C task, There is a one of homeom-orphic X(z)
solution to the first equation that fixes the coordinates 0,1 as:

Observe that in the case of the last task is exclusively in the Area DcC definied, it may extend to
the entire by putting it outside A=0, hence the first formulation of the 1% theorem applies for

every area
Y A@) ¢ Al < 1 DcC

X(2)
Second Theorem formulation [3]: in which is homeomorphic task, exhausts the collection of
all generalized equation solutions (1). Solution according to the first Theorem, and ®(§) is a
homeomorphic task in area X.
Furthermore, in the case of the f(z) contains isolated singular points, (D). So, a holomorphic task
possess the same types for isolated singularities.
Nota bene: ® = fox!
According to Theorem 2, the A-analytic task f performs internal mapping.
That is, it transforms one open set to another.
Therefore, the maximum principle holds true for these tasks; given each confined area DcC, the

modulus of f = constant reaches its maximum value only on that area Boundaries,

for example If(2)| < mgl))df(z)l, Z€D

€
Whenever the task is not 0, the minimal principle also holds.
For example If(2)| > rrégnlf(z) ,ze D

Z Z
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Third Theorem [6]. In the case of a task A(z) is based on a group of m-smooth class tasks
A(z)eC"m (D), so, each f solution for equation numberl and as belongs to the same class,

here, let only consider the case in which A(z) stands for an anti-analytic task 6A=0 in an area

DcC also |A(2)|<C<1,(0<C<1),VZzE€D
d - o = d d
DA = g—A(Z)g, DA = g—A(Z)g
f ecm™(D).
SO we can get :
In the case of (1) is correct, so, the class of is A(z) - analytic function f € 0,(D) is defined by
the fact that D,f = 0. It follows from Theorem 3 that the anti-analytic function 0,(D) c
C* (D) is endlessly smooth (D).
Fourth Theorem. [11]. (Analogue of Cauchy theorem). In the case of in which D c Cis an
area contain piecewise smoothly boundaries dD, and in the case of the area D is connected as a

fixed point & € D simply, so, :

ff(Z)(dz 4+ A(2)dz) =0
oD
V68 =2 =+ T A

| (2) = fv(E 2 A(t)d(7)

is accurately specified in an area D, in which y(& , z) has been a smooth curve involving the
points, &, z€D. An integral of

is a, because the area D is merely connected, and A (z) stands for a holomorphic function.

It has been integration path, and corresponds with an anti-derivative,

Theorem 5. [10]. In the event that D is merely a connected and convex region, the kernel-style
task

I'(z) = A(2) )

1 1
k(z,6) ==—" —_—
(&¢) 2mi 7 — &+ fy(f,z)A(T) dt
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Is there A(z)-analytic task out of a point in which z=& In the case of so, so, ke O_A (D\{&}) is
an answer; also, z=¢ the task k(z,§) is easy task at z=&.

Proof. A simple check shows that the task
V(&) =z-§H@ =z-§+[ A@dr,

iIs A(z) —analytic in D:

2z-¢ +TD21@ =22 A [2- ¢ +T@ ]
i.e.(z &) € 0,(D).

The task Y(&,z) =z ¢ +fy(f 2 A(7)dt has a unique simple zero at the point z = . In fact,

|€, z| is a segment which connects the points &,z € D, so,
z-¢& +fy(f ’Z)A(T)d‘[ =z-¢& +f|E’Z|A(T)dT
and since |A(z)| < ¢ < 1, we have
z- ¢+, A@dr|=1z—-¢l-| [, A@dr| >
2|z=¢l - [, lA@Ildtl = |z =&l —c- [, ldtl=(1-0)lz=¢]>0,

z # €.

the task ¥(z, &) has only one zero and it is simple at the point z = &, therefore, k (z, §) is
holomorphicin D \ {¢} . z = & is its simple pole.

Remark 1. Notably, area D has been convex; K (z, §) possesses a simple single-pole point z =
¢. In the case of region D C has not been Convex and it is merely simple-Linked, regardless of

the tasks:

=& -7+ A
YED=¢-2+4 . A@dr
Theorem 6: Let D c C be any arbitrary convex area, and let G < D be any arbitrary

subarea with a smooth or piecewise smooth border 0G.
Therefore, the formula (3) applies to any task f(z) € 0,(G) N C(G)

@) f(2) =, K (E.2) f(£) (dE+AE)E) ,2€G .

Proof. Fixing a pointz € G and smallcircleU (z,e) < G, € > 0, the following theorem

Vol. 71 No. 3 (2022) 1377

http://philstat.org.ph



Mathematical Statistician and Engineering Applications
ISSN: 2326-9865

holds: (4)

| k€2 £C6) s + A
aG
= e K (G2) F(8) (d€ + A©)dD),

but according to the Stokes formula we have:
Jemye K G 2) F(E) [@E+A®AE) = [, fEOW(E,2) =
Jeope AUFOWE, 2= [, dfOw(E,2)+
J e F©dw (€,2)
— 0+ f(z) = f(2),fore — 0 |

2. A(z)—harmonic task

As stated earlier, the A(z)-harmonic task is the real component of A(z)-analytical tasks. The
imaginary component of the analytical task is harmonic. A(z)-harmonic tasks exist when A(z)
represents anti-analytic tasks.

Theorem 7: The real component of the analytic task f(z) € 0,(G) satisfies the following
equations.
Aqu=0 4)
in which
4 = 5 [ [+ 142D 5 - 2450+ [ mla + 1420 5 - 2430)
Note Theorem 7 gives the following determinations for the A(z)-harmonic task.

Definition 1.

In area G, a task of twice differentiable function u € C%(G),u : G - R is A(z)-harmonic if,
called A(z)—harmonic, it is a solution to the differential equation (4).

h,(G)is the symbol for a class for A(z)-harmonic tasks in area (G), and both the real and
imaginary components of the A(z)-analytic task f(z) € 0,(G) are A(z)-harmonic tasks.
Likewise, the opposite is true for Areas with a simple link.

Theorem 8. f(z)€ 04(G, such that u =Re f, exists in the case of the task u(z) € h,(G), (G), in
which G is a simply connected area.

For A(z)-harmonic tasks, theoretically, operator A(z)—has the similar role as u operator
concerning harmonic and subharmonic tasks (Namely, we must provide the integral principle.
Assume GcC to be the convex area, and let

lp(Z, E) =Z- S; + fy(f’z)g(l’)d‘[

correspond to the appropriately defined task for G.
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Theorem 9. Poisson's formula (by Poisson's Theorem) holds in the case of a task u(z) has been
A(z)-harmonic in the lemniscate L(a,R)cD, continuous in its closure, specifically u(z)eh_A
(L@R)NC(L (aR))

1"2— a 2 _
©) “(Z):ﬁfﬁw(e,an:Ru(E) wl)éfnz_)l | d¢ + A(§)dé|.

Other side in the case of the tasks (&) continuous at the boundaries of the lemniscate L(a,R) c
D, So, the Task:

WD) = 76y yn OO Tl | dE + A )

Is the Lemniscate a Solution to the Dirichlet Problem:
L(a,7):0qu=0Vz€L(aR),uldL(a,R) = ¢.

Theorem 10. in the case of task u is an A(z) —harm-onic in a Lemn-iscate
L(z,R) ={§ €G:|¥(z )| <R}cGC

so, the following equality holds for any r < R:

u(2) = 3= 6 e 1 WO dE + AE©)dE].
Proof. Since u € h, (L(z,R)) so, there is a task f(z) € 04(L(z, R)) for which u(z) = Rf (2).

we expand the task f(z) in the area L(z,R) in a

Taylor series

f(2)=Xn=0cn V" (3, 2).

If r <R, the Series converges uniformly in a lemniscate | Y (&,z)| < r.

u(@) =5 (f @+ F@) =320 [¥" (. 2) + 9", 2)] (7
using  dy(§,z) =dé + A(§)dE =rietdt, 0 <t < 2m

and | dé + A(&)dé| = rdt,

Compute the following Integrals:
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n Fl _ 41 (2T _tin _ 0, n=1
$yam VI ED| S+ A = [Te dt_{ 2nr, n=0

S e T o) n=1
oy P E D] A5 + A = i fTemae={ ) T

Integrating the part-equality (15) in a perimeter for lemniscate yields a subsequent equivalence:

Eﬁw(f,zn:r u®)| dé + A(©)dé| = mr(cy + &) = 2mru(z) -

Theorem 11. (Fubini’s Theorem). In the case of f(x,y) is continuous throughout the rectangular

region,R:a<x<b, c<y<d,(ab,cdE€R)Ss0,
d

_fﬂ%wM=Jfﬂ%www=ffﬂmw®M-

R c
Theorem 12. Task u € C(G) , the subsequent Statements have been Comparable:
1) u € hy(D);
2) forany z € G and L(z,r) cc G the following equality holds
1 —
u@ = 5=, e WO S + A)dE
3) forany z € G and L(z,r) €G the following equality holds
1
u(@ = 5 M1y e 1@ AR (8)

dé Nd&
2i

.
’

Where du(1 — | A()|?)

Proof. 1 = 2 based on a mean magnitude, A theory (10). 2 3 stems based on Fubini's familiar

formula. Hypothesis ( 11):
1 1 r =
e VO = 15 Jo At fy ¢y 1®| dE + A dE] =

= #for 2ntu(z)dt = u(z).
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here we are using the following obvious equality,

dENdE

du (1 — | A@®)D)ZE2 = 2 (d€ + A dE) A(dE + A()dE) =
= 2 dp(&, DAAP(E,2) = dt ® |dp(§,2) | = dt® | dE + A()dE]

Fix a lemniscate L(a, R) c G to prove that 3=1is true. Apply the poisson formula (5) to the
task

v € hy(L(a,R)) N C(L(a,R)) :Vlsrar) = UlaLar)

Using the auxiliary task u; = v — u, in which Ui loriar = 0.

To every L(z,r) cc L(a,R), equality (8) holds since v(z) € hy(L(a,R)) and u(z) fulfil the
Theorem condition. From the following can be inferred the required statement.

Lemma 1. in the case of the mean value condition 3 for task u € C(G), uZ const, has been True,
i.e. for every zeG and L(a,R) cc G , the equivalence (8) holds, so, u(z) cannot attain its
maximum or minimum magnitude within G.

Proof. Indeed, presume:

3z° € G : u(z®) = sup u(z),

fix L=L(z%r) caG,

and write the equality (8)

u(z’) = -5 ff, u®dn = #ﬂm{u(s)w(ﬂ)}“(z)d“ + #ﬂm{u@)w(z%}u@d“
- # Wintur=ugoy 1Edr + # Wi ey<ugeoyy 1B M

= o Jl, u@@du— n%ﬂm{u(i’)ﬁt(zo)} u(z)du+ Wiy <ugeoyy 1E@dR

= u(2°) = = [J; npucercupoy (2% — u(O)]1du. (9)

Since u(z%) — u(&) = 0 vé € L(z° r) then from (9) it follows that

L% n{u®) <u(zD}=0,ie u@) =uz®in (z%7r).
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Changing u(z) to -u(z) reveals that the Minimum principle holds for u(z) under the conditions of
Lemma 1, i.e., in the case of u(z) is less than u. (z)

3z € G : u(z®) = infu(z) .
Then u(é) = u(z®) vz €G. [ |

It suffices to observe, to conclude the proof of Theorem (12), that the auxiliary Task u; = v — u,
for which u; € C(L(a,R)) and Uijyyar = 0» the condition (3). Based on Lemma (1), u; = v —
u=0ie.

u(z) =v(z) € hy(L(a,R)). |

Corollary 1. (Extremum principle). In the case of the task u € h, (D) touches its extreme in G,
S0, u = constant.

Corollary 2. The Dirichlet problem A, u(z) =0z € G, u € hy(G) N C(G), Ulgg = @, @ €
C(0G) takes the distinctive solution.

Proof. Assume two solutions u,; and u, are existing. So, their difference v = u; — u, € hy(D)
has been continuous in D and v|p = 0. Therefore, by extremum standard v|,, = 0,

For example, u; = u,.

3. Equivalence for Harnack’s theorem

Remark 2. Here, the equivalence for familiar Harnack's Inequality has presented, that is vital in
proving Harnack's eorem.

Theorem 13: Assume u (z) has the A(z)-harmonic task in a lemniscate. L (a, R)yc D ,
continuous in its closure, specifically u(z)€ hy (L a R))n C(L(a, R)), in which D c C has been
convex area. In the case of u(z)= 0 in a lemniscate L (a, R), so, it will be right Harnack’s

inequality.
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T+pu (@ <y(z) <= u (a), z € dL(a,p). (10)

Proof. In L(a, r) The Poisson's formula was written as (cf. (12))

_ 1 r’—ly(za)l? z =12
6 (2) = 5 f e W O Taar | € FHAE] 26 L@, j= 1.2

This formula implies the following inequality :

Tu(@) < 4 () < T (@), 7€ 0L(ap) = (1§ )l = p)

Which is equivalent to

r—p r+p
muj(a) <y (2) < ;uj(a), z € dL(a, p). ]

Theorem 14. A monotonically increasing series for A(z)-harmonic tasks u_jeh_A(D). If it

converges uniformly (in D) to, or meets uniformly to definite A(z)-harmonic tasks u € h, (D).

Proof. It suffices to demonstrate the theorem given a monotonically growing sequence such as

uj — u(z) ,u(z) € (—oo,+o ]. We correct a random convex area GD In which a lemniscate

can be defined as (a,7) = {£ € G : [{(§,a)| <r} c G, a€G ,r>0 it can be assuming that u; >

u,(z) =0V z € G given that u_j>u 1 (z) and, should it be necessary, adding positive constant.

Using the formula for the mean value (10) so, :

w(2) = #fﬁ peeazr W (Bd1

According to Levy's theorem, this equivalence applies to you as well (the priory u is
feasibly not bounded)

1
u(z) = — jj u(®dy
[Y(a)lsr

11)
Case 1. U represents not bounded task, and the equation reads 3 aeG:u(a)=+c. In the case of
this is the case, the left side of equation (10) suggests that the value of u j (z) as j— o, as
uniformly evaluated in OL(a,p),V p<r, meets to +oo. Here, demonstrating that u(z)=tw in G
besides u_j (z) as j— oouniformly converges to + in arbitrary L(a,p)cG is not a difficult task at
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all.

Case ll .u(z) <oV zEe€AQG.So, the right-hand of (10) indicates that
(uj+m(a) — U (z)) ,Z € dL(a, p).
Moreover, the sequence u;(z) as j — oo uniformly converges in L(a,p), p <r.

As a consequence of this, in any compact KG, u j (z) uniformly meets u(z), with continuous u(z)
in G. (11). The both theorems support this proposition (12). As a result, u(z)h A. (G). Because
GD stands for a fixed arbitrary convex area, u(z) has been A(z) in D.m

r+p

Ujpm(2) —uj(2) < —

Conclusions

1- Study some properties of A(z) — harmonic tasks.

2- Proving an analog of the Schwarz inequality for analytic tasks A(z).
3-Proving the integral formula of Poisson for A (z)-analytic tasks.
4-Demonstrate an analog of Harnack's theorem for A(z) - harmonic tasks.
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