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Introduction

Mathematical chemistry is the branch of mathematics that deals with the combination of mathematics
and chemistry. By using these combinations, we apply mathematical rules to solve the problems facing
in chemistry [21, 32]. Usually, we use rules of special branch of mathematics which is called graph
theory. Graph theory [4] is the branch of mathematics that deals the graphs, networks and used to
represent structures. Chemical graph theory is a branch of mathematical chemistry which is concerned
with the non-trivial uses of graphs to solve molecular difficulties in chemistry [33]. In general, a graph
is used to represent a molecule and a molecule is a group of atoms which has his own identification,
chemical properties and unique structure. Normally, we consider atoms of the molecule as the vertices
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of the graph and the chemical bonds as the edges of the graph. Order of the graph is the total number

of vertices in a graph and the size of the graph is total number of edges in a graph. We use another
term in chemical graphs which is called degree of a vertex, i.e., the number of edges connected to that
vertex is called degree of that vertex.

Topology of the structure of a molecule plays a great role in understanding the structural and chemical
properties of a compound like boiling point, melting point, valency etc. For instance, the boiling point
of chemical compound that is a physical property that can be estimated using degree and distance
between the vertices of the chemical compound. Thus, topology of a molecule represents important
properties about the molecule. By seeing this behave, in 1947, Wiener identified first topological index
in 1947 when he was doing work on boiling points of alkane, this finding led to the foundation of the
idea of topological indices [9].

A topological index is the value of a particular mathematical function which shows important
properties of molecular structure and gives us useful information without experiments. This is briefly
explained by Diudeab et. al.[6]. Randic presented first degree-based topological index in 1975 [26].
Afterward the work of the Randic, Gutman introduced the first, second and third Zagreb indices
continuously in 1970’s [12]. After that, hundreds of topological indices were introduced which are
used in literature till now [1, 3, 5, 7-8, 10-11, 14-20, 22-25, 27-31, 34-44].

Recently, Gutman [13] proposed a new degree-based topological index called the Sombor index.
Sombor introduces the ordinary Sombor index, the reduced Sombor index and the average Sombor
index which are defined as following:

The ordinary Sombor index for a graph G [13] is defined as

The reduced Sombor index [13] for a graph G is defined as

50,0a(6) = Sy, J (d; — )2 + (d; — 1)2. @)

The average Sombor index for a graph G [13] is defined as

S0uur(6) = Sivy | (i = D2 + (0= D2 (3

Silicon carbide is a semiconductor crystalline compound formed by silicon and carbon. The crystal of
Silicon carbide is like a closely attached structure in which atoms have covalent bonds between them.
The arrangement of atoms is like two primary coordination tetrahedral where four silicon and four
carbon atoms are bonded to a central Si and C atoms are formed. These tetrahedral units are packed
together through their corners to form polar arrangements and polytypes [2].

The aim of this paper is to calculate the Sombor indices for different structures [2] of Silicon carbides
such as Si,C; —I[p,q], Si,C3—1I[p,q], Si,C3—1II[p,q] and SiC; —Ill[p,q]. These silicon
carbides are defined in next section.
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Computation of (Si,C5 — I[p, q))

Consider the silicon carbide (Si,C3; — I[p, q]) as shown in the Error! Reference source not found.. In
order to understand the structure of molecule of (Si,C5; — I[p, q]), we consider p shows the number
of unit cells connected in a chain and g shows the number of rows in a connection and red lines
shows linkage between two chains [2].

Error! Reference source not found.(a) shows the structure of (Si,C; — I[p, q]) for p=4 and gq=1 and
Error! Reference source not found.(b) shows the structure of (Si,C; — I[p, q]) for p=4 and g=2, while
Error! Reference source not found.(C) shows the structure of one-dimensional unit cell of (Si,C; —
I[p, q]) in which brown vertices shows carbon atoms and blue vertices shows the silicon atoms.

(b)

Figure 1. Two Dimensional structure of (Si,C; — I[p, q]) with carbon (brown) and silicon (blue). a).
(Si,C53 — 1[4,1]) one row with p=4 and gq=1. b) (Si,C5; — I[4,2]). c) (Si,C3 — I[1,1]).

Table 1. Frequency partition of E(Si,C5; — I[p, q])

(didp) | (12) | (AL3) | (22) (2,3) (33)

Frequency | 1 1 p+2q | 6p—1+8(q—1) | 3p(5q —3)—13q+7

Theorem 2.1. Consider the silicon carbide (Si,C; — I[p, q]), then the ordinary Sombor index of the
silicon carbide (Si,C5; — I[p, q]) is

S0CSi,Cs — Ip, q]) = | (6P — 1 +8(a = D)VIZ + (45pq = 5(5p + 7q) + 21)v2 + \/E]_

+4/10

Proof: The ordinary Sombor index is defined as SO(G) = %;._ / d;® +d;’.
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S0(SiyC3 —I[p,q])
= V12422 + (V12 + 32+ (p + 2q)22 + 22 + (6p — 1+ 8(q — D)V22 + 32
+(3p(5qg —3) — 13q + mm].
=V5+V10 + (2p + 4q)V2 + (6p — 1 + 8(q — 1))V13 + +(3p(5q — 3) — 13q + 7)3V2.
= (6p — 1 +8(q — 1))V13 + (45pq — 5(5p + 7q) + 21)V2 + V5 + V10.

Theorem 2.2. Consider the silicon carbide (Si,C; — I[p, q]), then the reduced Sombor index of the
silicon carbide (Si,C; — I[p, q]) is

1+8(q—1))V5+ (6p(5q¢ —3) —26q + 14)V2 +p .

. 6p —
S0 Si,C; — I[p, = (
rea(SizC3 [p.q]) +2q +3

Proof: The reduced Sombor index is defined as S0,.q(G) = X;~;+/ (d; — 1)? + (d; — 1)2.
After putting values from the Table 1 as in above equation (1), we acquired the required result, i.e.,

S0rea(Si2C3 —I[p, q])
=(MVA-12+2-1D2+ (VA -1D2+ B -1+ (p + 29V (2 - D? + (2 — 1)
+(6p—1+8(g—1D)J2-1D2+ (3 -1)2
+ (3p(5¢ —3) —13q + 7))/ (3 — 1)2 + (3 — 1)2.
=1+2+(+2q) +(6p—1+8(q—1))V5+ 3p(59 — 3) — 13q + 7)2V2.
=(6p—1+8(q — 1))V5+ (6p(5q — 3) — 26q + 14)V2 + p + 2q + 3.

Theorem 2.3. Consider the silicon carbide (Si,C5; — I[p, q]), then the average Sombor index of the
silicon carbide (Si,C; — I[p, q]) is

SOavr(SiZCS _I[p' q])
=J(1—J)2+(2—&)2+\/(1—&)2+(3—&)2+(p+2q)\/(2—&)2+(2—a'l)2

+(6p—1+8(q—1))J(2—d)2+(3—&)2

+ (3p(5q —3) — 13q + 7)J(3 —d)2+ (3—-d)2

Proof: The average Sombor index is defined as S0,,,(G) = ZM\/ (d; — d)? + (d; — d)?,
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21E(G)!

WV (G)

where, d =

But for (Si,Cs3 — I[p, q]), we havevlE(G)| = 15pq — 2p — 3¢,V (G)| = 10pq and

5 _ 15pq—2p-3
q = 15pa=2r-3q
5pq

Now putting values from Table 1 in above equation (2), we acquired the required result, i.e.,

S0avr(SizC5 — I[p, q])

=J(1—d)2+(2—a)2+\/(1—&)Z+(3—&)2+(p+2q)\/(2—&)2+(2—&)2

+(6p—1+8(q—1))J(2—d)2+(3—d)2

+ (3p(5q —3) —13q + 7)\/(3 —d)2+ (3—-d)2.

5 15pq—2p-3
Here, d = —2-L—=1,
5pq

Comparison

Here, we present a numerical and graphical comparison of ordinary Sombor index, reduced Sombor
index and average Sombor index for the Silicon carbide Si,C; — I[p, q], where (p, q)=1, 2, 3,..., 8
(see Figure 2 and Table 2).

Table 2. Computation of Sombor Indices for Silicon Carbides Si,C; — I[p, q].

9 11 | 22) | 33) | (44) | (55) | (66) | (7,7) | (88)

SO(Si,C3 —I[p,q]) |31.911 | 188.46 | 472.27 | 883.37 | 1421.7 | 2087.4 | 2880.3 | 3800.6

$0,64(Si,Cs 8.6948 | 14.717 | 20.738 | 26.763 | 32.78 | 38.80 | 44.82 |50.85
—I[p,qD

S04y (Si,Cs 3.1716 | 11.648 | 25.735 | 41.889 | 58.891 | 76.314 | 93.973 | 111.78
—1I[p,q])
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Figure 2. Graphically representation of computing Sombor index for the Silicon Carbides Si,C; —
I[p. q].

Computation of (Si,C5 — II[p, q])

Consider the silicon carbide (Si,C3; — I1[p, q]) as shown in the Figure 3. In order to understand the
structure [20] of molecule of (Si,C; — II[p, q]), we consider p represents the number of unit cells
connected in a chain and g represents the number of rows in a connection and red lines shows linkage
between two chains. Figure 3 (a) shows the structure of one dimensional unit cell of (Si,C; —
I1[p, q]) in which brown vertices shows carbon atoms and blue vertices shows silicon atoms, Figure
3 (b) shows the structure of (Si,C5; — II[p, q]) for p=3 and g=3 and Figure 3 (c) shows the structure
of (Si,C; —1l[p,q]) for p=5 and g=1 while Figure 3 (d) shows the structure (graph) of (Si,C5; —
I1[p, q]) for p=5and g=2.

Table 3 Frequency partition of E(Si,C3 — I1[p, q])

(dipdp) | (12) | (1,3) | (22) (2,3) (3,3)

Frequency | 2 1 2(b+q) | 24p+4q—-7) | 15pq—13(p+q) +11

e ™
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Figure 3. Two Dimensional structure of (Si,C; — I1[p, q]) with carbon (brown) and silicon (blue). a)
One dimensional unit cell of (Si,C; — II[p, q]. b) Structure of (Si,C5 — I1[3,3]). c) Structure of
(Si,C5 — 11[5,1]). d) Structure of (Si,C5 — I1[5,2]).
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Theorem 4.1. Consider the Silicon carbide (Si,C; — I1[p, q]), then the ordinary Sombor index of the

Silicon carbide (Si,C5 — II[p,q] ) is

S0(Si,C3 — I[p,q])
= [2V5 + V10 + 4(p + q)V2 + 2(4p + 4q — 7)V13 + 3(15pq — 13(p + q) + 11)V2]

Proof: The ordinary Sombor index is defined as SO(G) = ¥, f d; +d;’.

The total number of vertices and edges for silicon carbide Si,C; — II[p, q] are 8pq and 15pq — 3p —
3q respectively. For Si,C; — II[p, q], we have vertices of degrees 1, 2 and 3. The edge partition for
the degree of vertices of Si,C; — II[p, q] is shown in Table 3, in which we have 2 edges of degree
(1,2), 1 edge of degree (1,3), (2(p + q)) edges of degree (2,2), (2(4p + 4q — 7)) edges of degree
(2,3) and (15pq — 13(p + q) + 11) edges of degree (3,3). After putting values from Table 3 in the
above equation (3), we acquired the required results, i.e.

SO(G) = (2)V12+ 22+ (1D)V12+32+ 2(p + q))V22 + 22 + (2(4p + 49 — 7))/ 22 + 32 + (15pq
—13(p + q) + 11)y/32 + 32.
= 2v5 + V10 + 2(p + q)2v2 + (2(4p + 4q — 7))V13 + (15pq — 13(p + q) + 11)V18
= 2V5 + V10 + 4(p + 9)V2 + 2(4p + 49 — 7)V13 + 3(15pq — 13(p + @) + 11)V2.

Theorem 4.2. Consider the Silicon carbide (Si,C; — II[p, q]), then the reduced Sombor index of the
Silicon carbide (Si,C5 — II[p,q] ) is

SOreq(SizCs — 1[p,q]) = (2(4p + 4q — 7))V5 + (2(15pq — 12(p + @) + 1D)V2 + 4.

Proof: The reduced Sombor index is defined as SO,.4(G) = Zi~j\/ (di—1)2+ (dj — 12
After putting values from the Table 3 and using above equation (4), we acquired the required result,
ie.,
SO0rea(SizC3 — 1[p, q])
=VA-D2+2-1D2+WMVA-D2+B-1D2+ 20 + V2 - 1)? + (2 - 1)?
+24p+4q-7)J2-12+ 3 -1)2+ (15pq —13(p +q) + 11)/(3 = 1)2 + (3 — 1)2
=2+4+2+2(p+qV2+ (2(4p + 4q — 7))V5 + (15pq — 13(p + q) + 11)2V2
=(24p +4q—-7))V5+ (15pq —13p — 13 + 11 +p + q)2V2 + 4
= (2(4p + 49 — D)V5 + (2(15pq — 12(p + q) + 1D)IV2 + 4.

Theorem 4.3. Consider the Silicon carbide (Si,C5; — I1[p, q]), then the average Sombor index of the
Silicon carbide (Si,C; — II[p,q] ) is
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SOavr(Si2C3 - H[p:CI]) = \/(1 - &)2 + (2 - d_)z + \/(1 - d_)z + (3 - CI)Z + Z(p +
OV2—-d)2+2—-d)2+(2¢@p+49-D)W2-d)2+(B—d)2(15pq — 13(p+ @) +
11)/(3 —d)? + (3 — d)?

Proof: The average Sombor index is defined as S0,,,,.(G) = ZM\/ (d; —d)? + (d; — d)?,

where d = _lef((:))l' But For (Si,C; —II[p,q]), we have |E(Si,Cs—1I[p,q])! = 15pq — 3p —
3q, IV (Si,Cs — I1[p, q])| = 8pq. Then d = 22I=3P=34

4pq
Now, putting values from the Table 3 in above equation (5), we acquired the desired result, i.e.,

Soavr(SiZCS _H[p'q])
=\/(1—&)2+(2—&)2+J(l—&)2+(3—&)2+2(p+q)\/(2—c7)2+(2—&)2

+(2(4p +4q - 7))J(2 —d)2 + (3-d)?

+ (15pqg — 13(p + q) + 11)J(3 —d)2+ (3 -d)?

= 15pg—-3p—-3
Where d = =224=2P=29
4pq

Comparison
Here, we present a numerical and graphical comparison of ordinary Sombor index, reduced Sombor
index and average Sombor index for the Silicon carbide Si,C; — I1[p, q], where (p,q)=1, 2, 3,..., 8.

Table 4. Computation of Sombor Indices for Silicon Carbides Si,C; — I1[p, q].

».q) (1L1) | (22) | 33) | 44) | (55 | (66) | (7.7) | (88)
S0(Si,C3 — I1[p,q]) | 26.159 | 175.77 | 452.66 | 856.83 | 1388.3 | 2047.0 | 2833.0 | 3746.2
S0,6q(SiyCs 14.129 | 109.30 | 289.33 | 554.20 | 903.93 | 1338.6 | 1857.9 | 2462.2
—1[p,q])
S0,y (SiyCs 4.9686 | 207.88 | 948.28 | 2300.3 | 4277.7 | 6885.6 | 10126 | 14000
—[p,q])
88
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Figure 4. Graphical representation of Computation of Sombor Indices for Silicon Carbides Si,C; —

p, ql.
Computation of (Si,C3 — I1I[p, q])

Consider the silicon carbide (Si,C; — I11]p, q]) as shown in the Figure 5. In order to understand the
structure [20] of molecule of (Si,C5; — I11[p, q]), we consider p represents the number of unit cells
connected in a chain and g represents the number of rows in a connection and red lines shows linkage
between two chains. Figure 5 (a) shows the structure of one dimensional unit cell of (Si,C; —
I11[p, q]) in which brown vertices shows carbon atoms and blue vertices shows silicon atoms, Figure
5 (b) shows the structure of (Si,C; — 111[p, q]) for p=5 and g=4 and Figure 5 (c) shows the structure
of (Si,C5 — 111[p, q]) for p=5 and g=1 while Figure 5 (d) shows the structure of (Si,C; — Il1[p,q])
for p=5 and g=2.

@S acHses sl
R bR e }Ii X :»

?‘},?Iz_z bR z}: b3

Figure 5. Two Dimensional structure of (Si,Cs; — I11[p, q]) with carbon (brown) and silicon (blue). a)
One dimensional unit cell of (Si,C; — I11[p, q]). b) Structure of (Si,C; — I111[5,4]). c) Structure of
(Si,C53 — I11[5,1]). d) Structure of (Si,C5 — I11[5,2]).
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Table 5. Frequency partition of E(Si,C3 — I11[p, q])
Frequency 2 2p+2 42p+2q—-3) | 5p(3q—2)—13q +8

Theorem 6.1. Consider the Silicon carbide (Si,C; — I11[p, q]), then the ordinary Sombor index of the
Silicon carbide (Si,C3 — III[p,q] ) is

S0(Si,C3 — I[p,q]) = 2(2p + 2)V2 + (4(2p + 29 — 3) V13 + (15p(3q — 2) — 39q + 24)V2 + 2V10.

Proof: The ordinary Sombor index is defined as SO(G) = X;-; f d;* + djz. The total number of

vertices and edges for silicon carbide Si,C; — I11[p, q] are 10pg and 15pg — 2p — 3q respectively.
For Si,C; — I11[p, q], we have vertices of degrees 1, 2 and 3. The edge partition for the degree of
vertices of Si,C; — I11[p, q] is shown in Table 5, in which we have 2 edges of degree (1,3), (2p + 2)
edges of degree (2,2), 4(2p + 2q — 3) edges of degree (2,3) and (5p(3q — 2) — 13q + 8) edges of
degree (3,3). After putting values from Table 5 in the above equation (6), we acquired the required
results, i.e.,

S0(Si,C3 —1[p,q])

= (V12 432+ 2p + 2)V22 + 22 + 4(2p + 2q — 3) /22 + 32

+ (5p(3q — 2) — 13q + 8)\/3% + 32

= 2vV10 + 2(2p + 2)V2 + (4(2p + 2q — 3))V13 + (5p(3q — 2) — 13q + 8)(3V2)
=22p + 2)V2 + (4(2p + 2q — 3) V13 + (15p(3q — 2) — 39q + 24)V2 + 2V10

Theorem 6.2. Consider the Silicon carbide (Si,C; — I11[p, q]), then the reduced Sombor index of the
Silicon carbide (Si,C; — I1I[p,q] ) is

S0,6q(SizC5 — HI[p,q]) = [2p + 2)V2 + (10p(3q — 2) — 26q + 16)V2 + (4(2p + 2q — 3))V5 + 4].

Proof: The reduced Sombor index is defined as S0,,.4(G) = Ziﬁ-\/ (di —1)2 + (d; — 1)2
After putting values from the Table 5 as in above equation (7), we acquired the required result,
i.e.,
S0req(SizC3 — 1[p, q])
=QVU-12+B-1)2+@p+2)J2-1)2+ (2 - 1)?
+40Q2p+29-3)y2-1)2+B-1)2+(5p(3q —2) —13¢ +8){/(3—1)2 + (3 — 1)2.
=4+ 2p+2)V2+ (4(2p + 29 — 3))V5 + (5p(3q — 2) — 13q + 8)2V2
= (2p + 2)V2 + (10p(3q — 2) — 26q + 16)V2 + (4(2p + 2q — 3))V5 + 4.
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Theorem 6.3. Consider the Silicon carbide (Si,C5; — I11[p, q]), then the average Sombor index of the

Silicon carbide (Si,C3 — III[p, q]) is

S0qur(SiyC3 — Hl[p, q])

=(Z)J(l—d)z+(3—&)2+(2p+2)J(2—&)2+(2—&)2

+(42p +2q - 3))\/(2 —d)2+ B3 —-d)?2+ (GpBg—2)—13q

+8)J(3—&)2+(3—d)2

Proof: The average Sombor index is defined as S0,,,,-(G) = Zi~j\/ (d; — d)? + (d; — d)?,

21E(G)!

W)

But for silicon carbide (Si,Cs; — I1I[p,q]), we have |IE(Si,C3 — I1I[p,q])| = 15pq — 2p — 3q and

IV (Si,C5 — 11[p,q])! = 10pq, where d = 15pq5_;: —

Now, putting values from the Table 5 in above equation (8), we get

where d =

S0qpr(SizC5 — 1[p,q))

=(Z)J(l—&)2+(3—&)2+(2p+2)J(2—&)2+(2—&)2

+(4@2p +2q - 3))\/(2 —d)2+ B3 —-d)?2+ (GpBg—2)—13q

+ 8)\/(3 —d)2+ (3-d)2

15pq — 2p — 3¢q

d=
5pq

Comparison
Here, we present a numerical and graphical comparison of ordinary Sombor index, reduced Sombor
index and average Sombor index for the silicon carbide Si,C5; — I11[p, q], where (p,q)=1, 2, 3,..., 8.

Table 6. Computation of Sombor Indices for Silicon Carbides Si,C; — I11[p, q].

(»,q) 11 | (22) (3,3) (4.4) (5,5) (6,6) (7.7) (8,8)
SO(Si,Cs 32.061 | 61.467 |90.871 |120.27 |149.68 |179.08 |208.49 | 237.90
— Hl[p,q])

S0,eq(SiyCs 18.601 |34.580 |50.559 |66.540 |82.512 |98.493 |114.47 |130.46
—1I[p,q])
S0, (SiyCs 6.8264 | 15.890 |30.232 |46.767 |64.222 |82.139 |100.32 |118.66
— I[p, q])
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Figure 6. Graphical representation of Computation of Sombor Indices for Silicon CarbidesSi,C; —
IH[p, q].

Computation of (SiC5 — III[p, q])

Consider the silicon carbide (SiC; — IlI[p, q]) as shown in the Figure 7. In order to understand the
structure [20] of molecule of (SiC; — IlI[p, q]), we consider p represents the number of unit cells
connected in a chain and q represents the number of rows in a connection and red lines shows linkage
between two chains. Figure 7 (a) shows the structure of one dimensional unit cell of (SiC; — Ill[p, q])
in which brown vertices shows carbon atoms and blue vertices shows silicon atoms, Figure 7 (b)
shows the structure of (SiC; — Ill[p, q]) for p=5 and =5 and Figure 7 (c) shows the structure of
(Si,C; —IlI[p, q]) for p=5 and g=1 while Figure 7 (d) shows the structure of (Si,C5; — II[p,q]) for
p=5and q=2.

@ @

(@)
Figure 7. Two Dimensional structure of (SiC; — I11[p, q]) with carbon (brown) and silicon (blue). a)
One dimensional unit cell of (SiC; — I11[p, q]). b) Structure of (SiC; — I11[5,5]). c) Structure of
(SiC5 — I11[5,1]). d) Structure of (SiC; — 111[5,2]).
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Table 7. Frequency partition of E(SiC; — I11[p, q])
(dydp) | (1,2) | (1,3) (2,2) (2,3) (3,3)
Frequency |2 1 3p+2q—3| 2Bp+2q9q—4) | 4Bpq —3p —2q +2)

Theorem 8.1. Consider the Silicon carbide (SiC; — I11[p, q]), then the ordinary Sombor index of the
Silicon carbide (SiC; — I11[p, q]) is

SO(SiC; — II[p,q]) = 2v/5+ V10 + 2(3p + 2q — 3)V2 + (2(3p + 2q — 4)V13
+12(3pq — 3p — 2q + 2)V2.
Proof: The ordinary Sombor index is defined as SO(G) = ¥, ; / d;® +d;°.

The total number of vertices and edges for silicon carbide SiC; — I11[p, q] are 8pq and 12pq — 3p —
2q respectively. For SiC; — I11[p, q], we have vertices of degrees 1, 2 and 3. The edge partition for
the degree of vertices of SiC; — I11[p, q] is shown in Table 7, in which we have 2 edges of degree
(1,2), 1 edge of degree (1,3), (3p + 2q — 3) edges of degree (2,2), 2(3p + 2q — 4) edges of degree
(2,3) and 4(3pg — 3p — 2q + 2) edges of degree (3,3). After putting values from Table 7 in the above
equation (9), we acquired the required results, i.e.

S0(SiC3 — Ul[p, q])
= D12+ 22+ (D) (12 + 3% + Bp + 2q — 3) 2% + 2°

+(23p +2q —4))|2* +3* + (4Bpq — 3p — 2q + 2)) 3* + 3°

=2J5+J10+2@p+ 29 —3)V2 + 23p + 29 — 13
+12(3pq —3p — 2q + 2)v/2.

Theorem 8.2. Consider the Silicon carbide (SiC; — I11[p, q]), then the reduced Sombor index of the
Silicon carbide (SiC; — I11[p, q]) is

S0,0q(SiC3 — I11[p,q]) = 3p + 2q — 3)V2 + 8(3pq — 3p — 2 + 2)V2 + (2(3p + 2q — 4))V5 + 4.

Proof: The reduced Sombor index is defined as S0,.4(G) = X;~;+/ (d; — 1)? + (d; — 1)
After putting values from the Table 7 as in above equation (10), we acquired the required result, i.e.,

S0req(SiC3 — 1[p, q])
=Q@QVI-1D2+2-D2+WYA-1D2+ 3 - 1)?
+@Bp+29-3)VR2-1D2+2-1)2+(2@p+29-4H)J2-12+ (3 - 1)2
+(4(3pq —3p — 29 + 2))y(3 — )2 + (3 — 1)2
=@Bp+2q—-3)V2+83Bpqg—3p—2q+2)V2+Q23Bp+2q —4)V5 + 4.
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Theorem 8.3. Consider the Silicon carbide (SiC; — I11[p, q]), then the average Sombor index of the

Silicon carbide (SiC; — I11[p, q]) is

S0qyr(SiC3 — I[p, q])

=(2)J(1—5)2+(2—&)2+J(1—&)2+(3—&)2

+(3p+2q—3)\/(2—c2)2+(2—&)2+(2(3p+2q—4))J(2—&)2 + (3 —d)?

+(4Bpg —3p—2q + 2))J(3 —d)2+ (3 —d)2

Proof: The average Sombor index is defined as S0,,,(G) = Zi~j\/ (d; — d)? + (d; — d)?where

d= 7'5((3' But for (SiCs —IlI[p,q]), we have IE(SiCs— III[p,q])| = 12pq —3p —2q and

IV(SiC; — I[p, q])! = 8pq, where d = %

Now, putting values from the Table 7 in above equation (11), we get

Soavr(SiC3 - Ill[p, CI])

=(2)\/(1—&)2+(2—J)2+\/(1—&)2+(3—&)2

+(3p+2q—3)\/(2—(2)2+(2—&)2+(2(3p+2q—4))\/(2—a)2 + (3 —d)?

+(4(3pg —3p — 2q + 2))\/(3 —d)? + (3 —d)?

12pq—-3p—2q
4pq

where d =

9. Comparison

Here, we present a numerical and graphical comparison of ordinary Sombor index, reduced Sombor
index and average Sombor index for the Silicon carbide SiC5; — 111[p, q], where (p, 9)=1, 2, 3,..., 8.

Table 8. Computation of Sombor Indices for Silicon Carbides SiC; — I11[p, q]

®.q) (1L1) | (22) | 33) | (44) | (55 | (66) | (7.7) | (88)
SO(SiC; — I11[p,q]) |20.502 | 138.58 | 358.48 | 680.20 | 1103.8 | 1629.1 | 2256.2 | 2985.3
S0,64(SiCs 11.301 | 85.987 | 228.55 | 439.00 | 717.34 | 1063.6 | 1477.6 | 1959.6
— I[p,q])
S0, (SiCs 6.2956 | 30.962 | 63.680 | 99.089 | 135.65 | 172.80 | 210.27 | 247.96
— 1I[p,ql)
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Figure 8. Graphical representation of Computation of Sombor Indices for Silicon Carbide SiC; —
H[p, q].

Conclusion

In this paper, we have computed the newly introduced ordinary Sombor index, reduced Sombor index
and average Sombor index for the Silicon carbide graphs Si,C; — I[p, q], Si,C3 — Il[p, q], Si,C5 —
Il1[p,q] and SiC; — I11[p,q] in drugs. We have also determined formulas of respective Sombor
indices for all given structures of Silicon carbides. These formulas would help in investigation of
chemical and biological properties of silicon carbides in drugs.
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