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Abstract

The present paper deals with an investigation on three species ecological
commensalism. Here, all the three species are having limited resources
quantized by the respective carrying capacities. The mathematical model
equations constitute a set of three first order non-linear simultaneous coupled
differential equations in the strengths N1, N2, N3 of S, Sy, S respectively. All
possible equilibrium points of the model are identified. The system would be
stable, if all the characteristic roots are negative, in case they are real and
have negative real parts, in case they are complex. Criteria for the asymptotic
stability of all eight equilibrium points is established and also the global
stability is discussed by using suitable Liapunov’s function. Further the
numerical solutions for the growth rate equations are computed using Runga
Kutta fourth order method.
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1. Introduction

Ecology is the study of the interactions between organisms and their environment. The
organisms include animals and plants, the environment includes the surroundings of animals.
The study of living things (plants and animals) in connection to their environments and habits
is known as ecology. This discipline of knowledge is a branch of evolutionary biology
purported to explain how or to what extent the living beings are regulated in nature. Allied to
the problem of population regulation is the problem of species distribution- prey-predator,
competition and so on. The subject of ecology can be broadly sub-divided as auto-ecology
(the study of single species populations) and synecology (the study of two or more
communities). Synecological studies lead to the concept of the eco-system. This concept is a
direct outcome of the intensive work of several life scientists/biologists and botanists of many
generations. An eco-system may be considered as a unit that includes animals, plants and the
physical environment in which these live. This area of knowledge seeks to explain how many
different kinds of plants and animals can live together in the same place for many
generations. Animals and plants share the same habitat. Sometimes they can only share for so
long before some locally go extinct, but there are other circumstances when many different
kinds persist in a habitat indefinitely. As such, ecology may also be referred as the study of
distribution and abundance of species under habitat availing the same resources. The
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Ecological interactions can be broadly classified as Ammensalism, Competition,
Commensalism, Neutralism, Mutualism, Predation and so on. Significant researches in the
area of theoretical ecology have been discussed by Gillman [3] and by Kot [4]. Several
ecologists and mathematicians contributed to the growth of this area of knowledge.
Mathematical ecology can be broadly divided into two main sub-divisions, Autecology and
Synecology, which are described in the treatises of Anna Sher [1], Arumugam [2] and Sharma
[21].

Mathematical Modeling plays a key role in providing insight into the mutual relationships
(positive, negative) between the interacting species. Several authors Ma [6], Moghadas [7],
Murray [8] and Sze-Bi Hsu [23] were introduced the general concepts of Modeling in
Biological Science. Srinivas [22] studied the competitive ecosystem of two species and three
species with limited and unlimited resources. Later, Narayan [9] studied prey-predator
ecological models with partial cover for the prey and alternate food for the predator. Further,
Kumar [5] studied some mathematical models of ecological commensalism. The present
author Prasad [10-20] investigated continuous and discrete models on two, three and four
species syn-ecosystems.

Notation

N, (t) : The  population  strength of S, at time t, =123
t . Time instant
a, : Natural growth rate of S., i=1,2,3
a;; . Self inhibition coefficients of S, =123
a, . Interaction coefficients of S, due to S,
a; . Interaction coefficients of S, due to S,
s . Interaction coefficients of S, due to S,
k. _a : Carrying capacity of S,, i1=1,2,3

a

Further the variables N,,N,, N, are non-negative and the model parameters a,,a,,a,,a,;,,8,,,
a,,,8,5,a,; are assumed to be non-negative constants.
2. Basic Equations :

The model equations for syn ecosystem is given by the following system of first order non-
linear ordinary differential equations.

dN

d—t1=a1N1—a11N12+a12N1N2. (1)
% = a; Ny — ay, N3 . @
% =a3N3—a33N32+ a13N1N3+(123N2N3- (3)

dt

3. Equilibrium States:

The system under investigation has eight equilibrium states given by
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dN;

2=0.i=123 (4)
()Fully washed out state .
E;: NN =0,N, = 0,N; = 0.
(ii)States in which only one of the three species is survives while the other two are not .
E,: N, =k;,N, =0, N; = 0.
Es: N, =0, N, = k,, Ny = 0.
E,: Ny =0,N, =0, N; = ks

(iii)States in which only two of the three species are survives while the other one is not .

E5 : Nl = kl + kililllz ) IVZ = kz ) IV3 = 0.
v N N kqiaq3

E6' Nl —kl, NZ = O, N3 = k3 +a—33
LN — N oo k3 azs

E7- N1 —0, N2 - kz, N3 - k3 +a_33

(iv)The co-existent state (or) normal steady state.

k2a

E8=1V1=k1+

12 37 i ki ais ai3 a1 k>
;N2=k2:N3= +( +6123)a—33+k3.

aii aszz ai

4. Stability Analysis of the Equilibrium States:

Let N =(N;,N,,N;) = N+ U.

Where U = (u;,u,,u3)T isasmall perturbation over the equilibrium state
N = (N1'N2»N3) :

The basic equations are quasi-linearized to obtain the equations for the perturbed state as,

ie S=sU (5)
where
a, — 2a,;,N; + a,N, a,,N; 0
S= 0 a, — 2a,,N, 0 (6)
a;3N; az3N; az — 2az3N; + as3N; + a3,
The characteristic equation for the system is det [S — AI] = 0. (7

The equilibrium state is stable, if all the roots of the equation (6) are negative in case they are
real or have negative real parts, in case they are complex.

4.1. Stability of fully washed out state:

In this case, we have

aa 0 O
S= [ 0 a, O ] (8)
0 0 a3
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The characteristic roots of above equation are a;,a,,as; .Since all the three roots are
positive. Hence, the fully washed out state is unstable and the solution of the above equation

are

u1 = u10 ealt ; uZ :uzo eazt ; u3 ZU30 ea3t.

Where u,, , uyq , Uso are the initial values of u; , u, , us respectively.

Trajectories of perturbations:

Uz

1
The trajectories in u; — u, and u, — u3 planes are [5—1]“1 = [—
10

Uz0

4.2. Equilibrium state E, : Ny = k;, N, = 0, N3 = 0.
In this state, we have

—a; agz kg 0
S=10 a, 0
0 0 as + a3 kq

1 1
U3o

©9)

(10)

(11)

Here the characteristic roots are —a, , a, and as; + a;3 k; . Since two of these three are

positive, hence the state is unstable and the solutions are ,
Uy = (Ugo — pr)e”“f + ¢y et

uz = uZO ea 2t and u3 — u3oe(a3+a13k1)t .
akqu
Where ¢, = 222> 0

Trajectories of perturbation

aita;

The trajectories in u; — u, and u, — us planes are

1 1

e T =B e o

U3o

4.3. Equﬂlbrlum state E3 N1 =0, Nz = kz, Ng = 0.

After linearization, we get

a, +ak, 0 0
S = O _az 0
0 0 a3+ ayk,

Here the characteristic roots are a; + a3k, , —a, and as + a,3k, .

are positive, hence the state is unstable and the solutions are,

ul = ulO e(a1+a12k2)t , uz — uzOe_aZt and u3 — u3oe(a3+a23k2)t .

Trajectories of perturbations:

The trajectories in u; — u, and u, — u3 planes are

-1 1

[u1]a1+a12k2 _ [ ]az [ ]E _ [u3]a3+a23k2
U1o0 Uz0 Uz0 U3o
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4.4. Equilibrium state E, : N; = 0, N, = 0, N3 = k;.
In this state, after linearization
aq 0 0
S= [ 0 a, 0 ] (17)
ai3ks azsks —as

Here the characteristic roots are a, , a, and —as. Since two of these three are positive, hence
the state is unstable and the solutions are,

Uy = Uqg ealt y Uy = Ujpp eazt and

Uz = (Uzg — Py — P3)e ™ + pre™t + et (18)
Where ¢, = —a13k3u1° >0 and ¢, = 220 5 ¢
a2+a3

Trajectories of perturbations:

The trajectories in u; — u, and u, — us planes are

1 1
U1 Jag — | Y
[ulo] [uzo] and
uz = (uzp — ¢, — P3) [uz] & + ¢, [ @ + @3 [u (19)
20
4.5. Equilibrium state Es : Ny =k, +222 N, = k,, N3 = 0.
After linearization, we have
kaaqz
—T aqp (kl + a—ll) 0
S = 0 _az O (20)
0 0 as + agzk, + 25

Where T = a1 + alzkz > 0
Here the characteristic roots are —t , —a, and asz + a,s3k, +

a13‘[

. Since two of these three

are negative, hence the state is unstable and the solutions are ,

Uy = (Ugo — Pyle ™ + ppe~ %t

uZ = uzoe_azt and ‘U,3 == u309¢5t (21)

A12U20T

aiq(t—az)

where ¢, = , T # a, and

A301102+05(A13A12+023011)+0101307;

= > 0.
¢5 a11az2

Trajectories of perturbations:

The trajectories in u; — u, and u, — us planes are
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= — Uz 2 az __ ¢5
= oo = 00 2] 4 2] o[22 = 2 22)
4.6. Equilibrium state Eq: Ny = k;, N, = 0, N3 = kj +kza13'
33
Here,
—a a2k 0
5= ° “ 0 (23)

s (k3 + k;fhs) (k3 k1a13) —1,

33 ass
Where 1, = az + a3k, >0
Here the characteristic roots are —a, , a, and —t, . Since two of these three are negative,
hence the state is unstable. The equation yield the solutions,
U = (U — Pe)e™f + gt uy = uyg e®2*

and uz = (uzg — R; — Ry)e 1! + Rje™ ™1t + Rye%t (24)
where ¢, =%1:2°>00
2
and R. = a1371 (U10—6) >0 7, £a R, = a1371Pe+a23T1U20 >0
1 asz3(t1—aq) 1 1o 2 az3(t1+az) '

Trajectories of perturbations:

The trajectories in u; — u, and u, — us planes are

u; = (Ugg — ¢6)[ ¢>6[ ] and

Us = (s = Ry — Ry) [”2] R[] R[] (25)
4.7. Equilibrium state E, : N;y =0, N, = k,, N3 = k3 + kiazs

33
In this case, we have
a1 + a12k2 0 O
S= | e e (26)
Cl13 (k3 + (213323) a23 (k3 + %) —Tz

Whel‘e Ty, = a3 + a23k2 >0.

Here the characteristic roots are a; + a3k, , —a, and —7, . Since two of these three are
negative , hence the state is unstable and the solutions are
uy = uygel@takdt g —q, "%t and

Uz = (ugo — Ry — Ry)e ™2t + Rye(@1+a12k2)t 4 R p=aat (27)
Where R, = — 1372810 5 g gnd R, = —222"20 5 0 ¢, #q
3 azz(ai+agzkz+73) 4 az3(tz2—az) 2 2

Trajectories of perturbations:

The trajectories in u; — u, and u, — us planes are
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Uy a1+a12k2 az
[u10] |:uZO:|
T2 —(aj+aizkz)
u a u a
uz = (uzp — R3 — Ry) [u_zzo] >+ Ry u_;] 2 + R, [uzo (28)
4.8. Normal Steady State
_T3 a121V1 0
s=| 0 % 0 (29)

a;zN; axN; — [as + a3k, + (alailz + azs) kz]
Whel’e T3 = a‘l + a12k2 > 0

Here the characteristic roots are —75 , —a, and — [a3 + a3k, + (% + a23) kz]. these
11
are all negative, hence the state is stable. The equations yield the solutions as,

u; = (ugp — Rs)e ™ + Rge ™%t

U, = uzoe_azt and Uz = (U30 - R6 + R7)e¢t + R6€_T3t - 1278_(121‘L (30)
Where R5 = M > 0 ' T3 * a2 and T3 = a1 + alzkz
as1(r3—az)

1/) _ a3Q11022+02(A13012+033011)+A1013022—2033022011 1

ai1az2

>0,

y= ki aqs + (a13 ay + a23):_2 + k3 Rg = a3u(Rs—uqg) >0
33

ass aiz T3+Y
Rs+agsuu
and R, = "’a;—jl’;” >0

Trajectories of perturbations:

The trajectories in u; — u, and u, — uz planes are

u1=(u10—R5)[5 “2+R5[ ] and

s = (uso = Rs + Ry) |22 “f+R[ s — R[22 (31)

Uz0

5. Liapunov’s function for global stability :

In section 4, we discussed the local stability of all eight equilibrium states. From which only
the normal steady state is stable and rest of them are unstable. We now examine the global
stability of dynamical system (1), (2) and (3) at this state by suitable Liapunov’s function.

Theorem : The equilibrium state is Eg : (N;, N, , N3) globally asymptotically stable .

Proof : Let us consider the following Liapunovs function .

L(N,,N,,N3) =N, — N; — N1ln( )+11[N2 N, - Nzln( )]

+1, [N; = Ny — Ny In (g—)] . (32)
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where [; and [, are suitable constants to be determined as in the subsequent steps. Now the
time derivative of L, along with solutions of (1),(2) and (3) can be written as ,

% (N1N1 )dN1+ll( = )dN2+l ( NSI%)% (33)

% = —ay1[(Ny = Np?] + a1,[(Ny = Np)) (N, — Np)] + Li[—ay, (N, — Ny)?]

n {[—ass(Ns — N3)?] + a1_3[(N1 - N_l)(N3 - N3)]}
2 +a,3[(N; — N3)(N3 — N3)]

~[Va Ny = ) + Tz (N, = W) + Tz (Vs = )]
+(2yhay1az2 + ay2)(Ny — NNV, — N)

+(2y1,a11a33 + La13) (N, — N)) (N3 — N3)

+(2\/ lilyaz;a33 + l2a23)(N2 - Nz)(N3 - N3) (34)

The positive constants [; and [, as so chosen that, the coefficients of
2

Then we get [; = — ena >0 and I, = 4“;% > 0 with a3,a,, = 4a?,a2; .
U [Vamn - B + S () 4 22T gy ] (35)

Which is negative definite. Hence, the normal steady state is globally asymptotically stable.
6. Numerical approach

The numerical solutions of the growth rate equations computed employing the fourth order
Runge-Kutta method for specific values of the various parameters that characterize the model
and the initial conditions. The results are illustrated in Figures 1 to 4.

Table
Fig. | a4 a; as a1 | Qz2 azz | @iz | A3 | a3 | Ny | N | N3 t
no.
1 0.84 | 3.81 | 22.79 | 264 | 148 |32.05 |56 |10 17.08 | 20 20 20 --
2 492 |56 |10.28 | 148 |10.28 |4.68 |3.48 |0.92 |6.68 |212 [0.44 |296 |0.19
3 031 |3.01 {023 |571 401 |27 547 | 108 | 3.24 |1.85|1.47 |5.26 |0.25
4 139 | 257|011 |3.08 051 |[013 (44 (044|004 |354 231|092 0.93
&0.71
By taking above values we have drawn some figures
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Figure 4
7. Observations

Case 1: In this case the initial conditions of the three species Si, So, Ss are identical. It is
evident that all the three species asymptotically converge to the equilibrium point. Further we
notice that the third species has the greatest natural growth rate. This is illustrated in Figure 1.

Case 2: In this case the initial conditions of Sy, S1, Sz are in increasing order. The natural
growth rate of S3 and the self inhibition coefficients of S, are identical. Further the third
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species dominates over the first species up to the time instant t*=0.19 after which the
dominance is reversed as shown in Figure 2.

Case 3: In this case the third species has the least natural birth rate and all the three species
decrease initially. The first species dominates over the second species initially till the time
instant t*=0.25 and thereafter the dominance is reversed. Further it is evident that all the
three species asymptotically converge to the equilibrium point. This is shown in Figure 3.

Case 4: In this case the third species has the least natural growth. This is a situation at the
initial conditions of Si, Sy, S3 are in decreasing order. Initially the first and second species
dominates over the third up to the time t*=0.93 and t*=0.71 after which the dominance is
reversed. (Figure 4).

8. Conclusion

In this paper, we discussed the stability analysis of three species ecological commensalism.
The model equations constitute a set of three first order non-linear coupled differential
equations. All possible equilibrium states of the model are identified and the local stability is
discussed. It is observed that, in all eight equilibrium states, only the normal state is locally
stable. Further, the global stability of the system is established with the aid of suitably
constructed Liapunov’s function and the growth rates of the species are numerically estimated
using Runge-Kutta fourth order method.
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