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Abstract:

Training and deploying Deep Learning models in real-world applications
often involve processing large amounts of data. There is an active research
community working on building software and hardware infrastructure to
address these big data challenges, particularly focusing on building highly
optimized solutions and large footprints of parallel computers. Hyper focuses
on the complementary set of problems in the Deep Learning ecosystem to
lower the barrier of entry to the field. Hyper proposes a hybrid distributed
cloud framework that simplifies the hardware and software infrastructure for
large-scale distributed computing tasks.

The Hyper framework offers a unified view to multiple clouds and on-premise
infrastructure for processing tasks using both CPU and GPU compute
instances at scale. In the proposed system, the researcher implements a
distributed file system and a failure-tolerant task processing scheduler, which
are independent of the language and Deep Learning framework used. As a
result, the framework assists researchers in exploiting the unused and cheap
resources that are prone to become statistically more powerful tools in the
community. To clearly demonstrate the cost-efficiency of the system, the
researcher provides a detailed table showcasing the quantitative evaluation of
Hyper usage costs. In real-world applications, deploying Deep Models is often
non-trivial and can include multiple steps ranging from extensive post-
processing of the obtained scores to the containment of the numerous pre-
processing transformations of the data. The portability and generality of the
framework is demonstrated by discussing the scalability of different and non-
trivial real-life setups. These tasks include pre-processing, distributed training,
hyperparameter search, and large-scale inference tasks, showcasing usage
costs and total running times.

Keywords: Hybrid Cloud,Al Integration,Scalable Data
Engineering,Enterprise Al Infrastructure,Cloud Computing,Data
Scalability,Cloud-Native Al,Multi-Cloud Architecture,Distributed

Computing,Data  Pipeline  Optimization,Elastic ~ Scaling,Al Workload
Management,Cloud  Storage  Solutions,Edge = Computing,Al  Model
Deployment.

1. Introduction

Enterprises use an average of 1,427 cloud services, an increase of 28.5% from the beginning of 2021 which is
escalating the complexity to build and operate data services to support large workloads. Despite the cloud
providers’ ongoing efforts to make building infrastructure easier for cloud customers, there is still a huge gap
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between how cloud providers build scalable Al infrastructure and how traditional enterprises deploy their Al,
ML workloads and products. There is an increasing interest in Al infrastructure research that democratizes the
creation of Al products. Most advances in Al infrastructure democratization are inspired by the microservice
design pattern. In cloud environments, these advances are mostly customized orchestration engines or operators
for a certain type of job or infrastructure as code with a specific domain-specific language for ML workloads.

With the increasing size of Al models, Al infrastructure democratization has become more challenging. First,
with 3D Transformer models such as GPT-3 and other large-scale models introduced by T5, enterprise users
desire Al infrastructure to be scalable for running deep learning training jobs across hybrid cloud and on-prem
environments. Second, data engineering and preparation before training deep learning models deserve as much
attention because they exacerbate the complexity of training models. It is driven by the need to parallelize data
processing and model training to expedite model iteration. Third, complex data projects usually span various (at
least two) workloads across granular partitions of data.
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Fig 1: Hybrid Cloud and Al Integration for Scalable Data Engineering

1.1. background and Significance Data Engineering is at the core of a Data-Centric
Al strategy. Data consists of raw information in need of extraction, flatting, aggregation, merging, filtration,
denoising, imputing, structuring, locating, anonymizing, normalizing, arranging according to domain-specific
sequencing/organization practices. Moreover, there is a host of analyses and computations, such as detection,
unique counting, binary aggregation, time-window statistics, graph traversal, regressions, clustering, some of
which can be expressed through domain-specific sequences of operations of increasing complexity. Data
Engineering is the systematic programming of these operations at scale testifying hybrid knowledge of the
nature of operations and tools, and domain-specific understanding of the data. Pre-dating the Al revolution, Data
Science emphasized statistical experimental methodologies to segment, cluster, or classify indicative properties
of information, with the interest of generating a data-rich environment leading to question-driven hypotheses.
However post-Al revolution, the focus is on a simplified presentation and management of feature-sets and
computational resources. Data-driven invariances-of-interest are ignored. Presently, the availability of new
Enterprise Al infrastructure and ecosystems extends the complexity potential of developed models. This
translates into one or several components whose nature is agnostic to input features, with connections of a non-
Euclidean geometry that can be arbitrarily deep and wide. Consequently, exploiting modules, or similar
piecewise symbolic controllers, evolves into simply the string connection of classical learnable blocks, which
resemble usual optimized architectures, of which the parameters rather than the architecture are learned.

Equ 1: Scalable Data Storage in Hybrid Cloud

Where:
o )i, is the total data storage required.
. D,m_m,_m is the storage available on on-premises
Dtom{ = Drﬂl—p]"ﬁ'?ﬂ + Df.'fmm.’ o Dojoud is the cloud-based storage.
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2. Understanding Hybrid Cloud Architecture

Abstract: Assembled applications can perform their operations transparently and uniformly, without being
affected by their operational environment. In order to manipulate a large variety of components offering
different types of services, these applications sacrifice efficiency for abstract usability and need a complex
interface and operation orthogonal to their primary purpose. Platform-based applications however, assist their
operation with a dedicated runtime infrastructure. The proposed platform encompasses execution venues,
resource management and virtualization and relies on a minimal, abstract interface. The platform accommodates
these services in a scale-proportional manner. Commercial applications are fixed constructs executing
transparently. For a broad range of applications, such runtime support is key for cloud execution. These
components, which are at a higher collection of mainly scientific applications can be parameterized. However, a
prototype implementation provides an indicative implementation.
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Fig 2: Hybrid Cloud Architecture

2.1. Definition and Key Components This section provides an overview of a hybrid
cloud and Al-integrated data engineering service framework as an innovation in enterprise data engineering
infrastructure to accommodate next-scale data supply chains in the era of data capitalism. It considers the
following way of innovating a frontier data engineering infrastructure: A modern data engineering infrastructure
is developing as an ecosystem fed by a fast-growing group of startup vendors to optimize the job processing
performance. However, there is a lack of academic work for understanding this emerging technology. In this
section, the research develops proprietary ML-driven workload and infrastructure awareness and optimization
technology. This technology consists of an ensemble of time series forecasting models for predicting job queue
length and runtime, multi-armed bandit optimization for job configuration tuning, hyper-parameter optimization,
and a gradient boosting machine (GBM) model for resource tuning of the data engineering service.

By keeping close collaboration with industry practitioners, this research brings two innovations in technology
development. First, a cloud-native data engineering service is jointly developed to provide a low entry barrier
for small-medium industry adopters in developing advanced data engineering pipelines. Second, an
encapsulation framework is developed to package the ML-driven infrastructure awareness and optimization
technology as a cloud-native service.

The encapsulation technology, together with the cloud-native data engineering service, is now open sourced for
benefiting academic teaching, researching and developing. This research not only contributes to understanding
modern data engineering infrastructure development but also bridges the gap between academic research work
and the technology developed by industry startups and vendors. This paper keeps a consistent time period within
different research objectives for robust model training and testing. The forecasted job queue length from
proprietary models is normalized and applied to find the job placement opportunity in a central scheduler-
managed cluster.

2.2. Benefits of Hybrid Cloud Solutions As IT inevitably continues to expand and transform,
escalating pressure is being placed on traditional data engineering systems to deliver on new deployment
expectations. Simplified scalability, portability between infrastructure environments, and scalability are several
of the benefits. Because scalable data engineering is a foundational part of Enterprise Al infra operation, the
choice for underlying scalable data engineering systems determines if the overall system is adaptable, open, and
ready for the expected upsurge in challenges. One promising strategy is to pursue the separation of compute and
storage structures, a purpose shared by the opening and embodiment of many cloud-native tasks and scalable
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data engineering systems. Many businesses embracing distributed machine learning systems are establishing

new, cloud-based solutions to encapsulate and expedite the deployment and operation of these systems on top of

the distributed-filing and orchestration platforms. Each of the large cloud providers has inaugurated their

respective hybrid cloud solutions, all of which are re-engineering distributed cloud processing to provide micro-
services on pre-configured on-premise racks that can be linearly expanded to the cloud or other facilities.

Bringing scalable data engineering on-premise is a must for many enterprises dealing with large data sets and
ML models in order to address compliance and performance or monetization aspects. But while the total tally of
data transferred out of the cloud costs, network is traced and in-cloud data transfer is complimentary,
unexpected charges combine mosquito-tier cloud bills that don’t last long. Thus, those cloud costs are
scrutinized, optimizing for the most price-efficient configuration. There is no privacy concern as network cost
tracking only requires access to the cloud provider billing data. The motivation for cloud and cost model size
choice can easily be visualized and halted and the effect of these choices on efficiency assessed. Data that
should only be transferred between DC and cloud, and the cost threshold that the task can be carried out in
compliance with an on-premise data transfer budget is also proposed. Hyper is a distributed cloud work service
created specifically to save AlOps time, cloud costs and simplify cloud on-premise data and model transfers for
large-scale.

3. The Role of Artificial Intelligence in Data Engineering

Artificial intelligence (Al) systems together with machine learning (ML) models have proven efficient in the
automation of various data engineering tasks, such as data cleaning, pre-processing or transformation. Thus, a
rapidly growing data engineering ecosystem around Al technologies has formed, driven by software companies
and open-source projects offering data engineering platforms with integrated Al functionalities for building ML
models on large-scale datasets. Also, the creation of ML models requires handling large-scale datasets, the
characterization of the training data and the dataset distribution, as well as ensuring the reproducibility and
interpretability of the entire training procedure. In this context, a new research discipline at the intersection of
Al, machine learning and data engineering has recently emerged to optimize and facilitate the ML model
learning process: Optimized Data Engineering for ML. Major Al tech companies have been using these systems
to train ML models efficiently at a large scale. These developments have motivated the adaptation and adoption
of a similarly efficient data engineering ecosystem around Al technologies, also in a non-tech industry-specific
domain, often referred to as Enterprise Al.

There are several reasons to argue the importance of a scalable data engineering systems ecosystem around Al-
technologies in a rise of data-centric Al. First, the technical complexity of using large-scale datasets on ML
model creation for non-data scientists: Data-centric Al differs the most from the traditional big-data analytics
research field. It usually requires a tight collaboration between domain experts, often with a weak machine
learning or Al background, and data scientists. At the same time, a large amount of data preparation is needed
before a ML model can be built. Already a widely used cloud-based data engineering platform with Al
functionalities can facilitate and smoothen the conventional data-to-Al workflow, and thus significantly
decrease the entry barrier to start Al projects for data-engineers. Second, the lack of data-centric Al related
knowledge or general awareness within non-data scientist teams working on Al project teams. However, these
use-cases are typically not recognized a-priori as company’s products, but rather project-based tasks that
individual teams would like to explore. This would require a broader technological background and an
understanding of what can be feasibly achieved. Unfortunately, the rapidly growing data engineering ecosystem
aimed at increasing the efficiency of the data-to-Al workflow consists mainly of specialized tech knowledge and
thus remains overlooked by a non-data scientist organization.
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Fig 3: Data Engineering
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3.1. Al Techniques for Data Processing AT’s rapid advances promise groundbreaking

improvements in many areas, including medicine, cybersecurity and customer service, among others. However,

in practice, Al-driven initiatives often face challenges to bring those gains to reality, such as time-consuming

manual work required for data collection, preparation and labelling. These essential tasks become particularly
onerous when data grows in size and complexity.

Al technologies have been used to automate a wide variety of jobs. A tailored solution widely used in the
context of data analytics is the collection and analysis of performance or monitoring data such as log files.
Modern Al-powered data analysis solutions promise vast improvements in accuracy and efficiency, enabling
organizations to locate and fix potential issues before they happen. However, commercial data engineering
practices generally overlook vast swathes of their data for monitoring since collecting, preparing and manually
annotating large datasets is an onerous process. The exponential growth of data volumes faced by many
industries exacerbates these challenges. Even when such monitoring systems are in place, companies often
analyze just a small fraction of their data due to current limitations in human-aware techniques.

3.2. Machine Learning Models in Data Engineering The role of Machine Learning (ML) in data
processing is growing and the scale of inference is a function of the scale of data generation. However, large ML
models are complex systems. For ease of development, different functionality is implemented in separate
independent models. Thus, it naturally separates the tasks of loading and serving data and the ML model itself.
However, the development process is far from easy — the possibility of inference (online) deployment often is
not apparent, and the code that processes the data for the model becomes the main requirement for training and
inference. Moreover, conditions of operation often differ from each other. Separation processes featuring pre-
calculate the features of the model, storage of the calculated characteristics of the model, and making
predictions based on the stored characteristics of the model today have taken its place in the industry
shemoproizvodstveus. The design of such a model is atypical for ordinary models and is possible only for some
libraries.

Regardless of the design of the model, a great place in the final realization is occupied by the choice of
interfaces and use cases for the model. If the prepared data is in the form of a DataFrame or in the form of a
database ROW, then organizing the prediction of a one-time sample leads to an unreasonably heavy load on the
system. Moreover, the user code that executes the prediction must be protected from “train-time information
leakage”. The code for ML models is usually run isolated from user code on a different instance, different
hardware, etc. On the other hand, typical data preparation usually excludes a priori Dask. At the same time,
some use cases, e.X. serving a web server or model, serving a large number of predictions at a single request. In
this context, the idea appeared of making a package that collapses the DataFrame to the list of events and
connects directly to the interface of Dask.delayed. Such a package would allow to smoothly adapt the “user”
code to the format accepted in the industry, while maintaining the original sample type.

Equ 2: Scalable Data Processing Power for Al Models

Where:
e P41 is the total processing power.
® Py prem is the processing power available on-premises.
e P4 is the processing power from cloud resources.

Piotar = ’TPrm—pre'm + [:1 - "."‘)Pr.'{muf

e v is a factor that adjusts the proportion of resources allocated

4. Integration of Al and Hybrid Cloud

This paper describes Hyper, a prototype distributed cloud infrastructure designed for processing deep learning
workloads at a large scale. Hyper is based on a combination of three key ideas. First, Hyper introduces a
common DSL for the workload description. Second, for a given workload specification, it searches for the
optimal combination of available resources across multiple heterogeneous clouds and on-prem. Finally, it
minimizes the data movement between the resources by co-writing and partitioning into shards. The results
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show that implemented Hyper infrastructure allows to scale the deep learning tasks to up to 300 GPUs and over
10,000 CPU cores on an unprecedented scale, running workloads involving 100TB+ size datasets.

The growing volume and complexity of Al workloads pose scalability and resource utilization challenges even
for large GPU clouds. Rapid progress in the development of large models and datasets indicates the significance
of adequate scaling infrastructure. As an example, depending on the batch size, it takes several hours to train a
modern image classification model. The latest techniques in model research extend this time to dozens of days.
As a consequence, the cost of experiments in the model architecture study grows rapidly.

In recent years, widespread Al capabilities and research achievements in developing new models have rapidly
accelerated a wide variety of tasks. The non-trivial issue is the likelihood to deploy new models in industry. To
support this scenario, an experiment that used large and very large pre-trained models flowed into end-
transformers. The results of the experiment showed that the models grew significantly in scale, but also brought
an improvement in the quality of the final results.
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Fig 4: Hybrid Integration

4.1. Frameworks for Integration A distributed processing system for Al models is
introduced that combines managing Docker containers with a dynamic Enterprise Message Bus and a fine-
grained task management system. A prototype implementation used in the context of deep learning tasks is
detailed, and the approach’s flexibility illustrated by prototyping in other domains.

Let's integrate the two relevant innovations. The combination of Al-based services with data from a variety of
sources — sensors, transactional data, microservices, batch jobs — leads to the aggregate production of Al
models with complex pipelines. Such pipelines often require multiple processing steps with different
requirements regarding the infrastructure. Moreover, as the number of models grows, separate processing is
required for each component task per model.

Frameworks for building reusable Al models, compatible with hybrid and multi-cloud setups, are still at nascent
stages.

Simply, a distributed processing system for Al models is used that aggregates running Docker containers with
training scalers. Model and Data 1/0O are handled by a dynamic Enterprise Message Bus with a task-parallel
backend, implemented using a parallel processing framework. A wide use-case is demonstrated for scalable
deep learning tasks.

4.2. Case Studies of Successful Integrations Given the massive growth in on-premises data, edge
processing, and cloud Al deployments, hybrid cloud-Al infrastructure will dominate data engineering
architecture in the near future. However, there are not too many comprehensive and mature tools/frameworks in
the current landscape. This text envisages future innovations which may advance as the common enterprise
infrastructure technologies. Some early efforts towards these directions will also be presented. On-prem data
tools can’t natively communicate with cloud Al tools. It would be desirable that these tools take an
“orchestration-as-a-service” approach. Data job A (e.g., ML model training) is usually done in the cloud. Job A
needs to run many distributed tasks associated with large data. However, there may not be enough cloud
resources for job A to directly process all the data. Luckily, part of that data coincides with the data from on-
prem job B. This on-prem data may have been efficiently pre-processed via the aforementioned tools and is not
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suitable to duplicate in the cloud. Convenient APIs & abstractions would be provided for job B to be triggered

by job A and automatically adjust the data processing structure. Smart tricks would be pre-implemented inside

the tools that understand the cloud job A (like automatically shuffling the on-prem data). Too many data tasks

must be done in the cloud. As a result, it limits the agility/scalability of running on-prem KT pipelining. It is
desired that common ETL or data copy primitives have the “parallelism matching” awareness.

5. Scalability in Data Engineering

A recent trend in Artificial Intelligence (Al) is the transformation of domain knowledge into solver programs.
Modern Deep Learning (DL) based models typically consist of multiple layers and have been shown to
outperform manual feature engineered algorithms in numerous domains. Trained models encode the gathered
information about the data in the input features. The models can form complex dependencies and discover
hidden patterns which the manual feature engineering does not encompass. Wide and Deep models can also be
optimized for batch inference in an efficient way. The scalable transformer task consists in training, deploying
and executing a large-scale transformer model on terascale unlabelled data. Randomly initialized fully
connected Deep Neural Networks (DNNs) perform well for user-response and ad-click prediction. A Wide and
Deep (WD) learning-based model has been introduced for this task to handle both categorical features with large
sparsity and continuous features.

Recent production-ready models in Deep Learning (DL) are trained on large-scale labelled data with powerful
hardware resources. Single machine with limited memory resources can not be used in training state-of-the-art
powerful models. The client requires a distributed cloud-based solution for distributed processing. TensorFlow
is a well-known and widely accepted DL framework. High-level APl keras has been part of TensorFlow since
the version 1.5 release. Scalability is a must for the developed solution. Distributed cluster processing is
distributed across multiple machines to store and execute tasks simultaneously for high performance. compr is
based on the RISELab’s Ray framework which is a dynamic task-parallel framework. Task-parallel frameworks
execute and coordinate tasks in a distributed manner.
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Fig 5: Scalability in Cloud Computing Explained

5.1. Techniques for Achieving Scalability Scalability of Hybrid Cloud and Al Integration aims
to execute large-scale data engineering tasks. By definition of the Hybrid Cloud, the term scalability stands for
the ability of an Al deployment to handle the increased workload of an entire enterprise. However, not every
enterprise is easily scalable and grows without barriers. This section provides a set of innovations in Enterprise
Al Infrastructure that achieve scalable data engineering. Furthermore, it examines techniques for evolving a
typical Enterprise Al Infrastructure to a scalable one.

5.2. Performance Metrics for Scalable Systems The proposed research rests on analyzing the hybrid
cloud and Al integration in the light of their significance to scalable data engineering for enterprise Al. The
cloud and Al technologies have grown rapidly and they have brought various opportunities and expectations to
serve machine learning and data analytics processes. There are several cloud-based scalable Al platforms in the
market and one integrated platform has become popular as enterprise Al in diverse business areas. There is a
timely need to explore and study such Al platforms oriented to enterprise businesses which have hybrid cloud
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architectures as emerging Al infrastructure. This study aims to understand and explain such integration and

discuss its implications in serving scalable data engineering for various data sources such as structured,
unstructured, and real-time streaming data to be managed and analyzed with both batch and online processing.

The hybrid cloud and Al integration use centralized and distributed computing resources to manage and analyze
both batch and streaming data in various data formats. The scalable Al platforms rely on the cloud technologies
with the serverless execution capability to provide auto-scaling, monitoring, and integrating various ML models
as microservice based architecture. Moreover, scalable Al platforms also consist of automated ML models as a
service, hyper-parameter tuning, data transformation, validation, and model evaluation as meta learning to assist
the data scientist process. Such Al platforms have interconnected with various scalable cloud storage and
database services to adapt diverse data sources and computation resources. Scalable Al platforms are
harmonized by the hybrid cloud technology between public clouds and cloud-on-premises.

Equ 3: Elastic Scaling for Al Workloads

Where:
o R.caled is the scaled resource allocation (compute/storage).
o  Rpuse is the base resource allocation.

A is the scaling factor (rate of increase in resources).
R.w:ai;—.'d - fo:.&’e X {l T )"-t}

e tisthe time or demand factor.

6. Conclusion

Continued investment in Al and machine learning research has resulted in advanced data engineering
requirements for scaling the data, models, and embedding learning frameworks. As organizations look to
innovate with Al at high velocity, existing challenges will become more profound. Recent technological
advancements have transformed the way in which data and machine learning operations are managed in the
cloud. However, optimizing machine learning is more difficult than optimizing data systems because it involves
end-to-end lifecycle DAGs that combine data engineering workloads and ML training.

The majority of organizations will take a best-of-breed approach to build their own Al infrastructure systems.
Such composed data engineering and model serving platforms require a consortium of interoperable
technologies, allowing combinations of orchestration frameworks, databases, object storage systems, stream
processing technologies, and model server design. Collaboration among industrial partners is needed to build the
next generation of Al infrastructure that fully integrates the data and model life-cycles in a common platform.
Such collaboration would allow organizations to more quickly and cost-effectively develop and deploy
advanced Al systems in the cloud and operate them at scale thereafter.

Fig : Innovative Cloud Architectures
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