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1. INTRODUCTION

Levine [11] introduced generalized closed sets in general topology as a generalization of
closed sets. Sheik John [17] introduced w-closed sets in topological spaces. Ravi and Ganesan
[16] presented and § -closed sets in general topology as one more generalization of closed sets

and the new class of ¢ -closed sets lies between the class of closed sets and the class of g-
closed sets. Pious Missier et al. [15] Presented the idea of g" -closed sets and concentrated on
their most basic properties in topological spaces. Sheik John [17] introduced w-closed sets in
topological spaces. Many researchers like Veerakumar [19] introduced g-closed sets in
topological spaces.

The objective of this paper is to introduce for a new class of weakly generalized closed sets
called weakly p-closed sets by applying generalized closed sets in topological spaces.

2. PRELIMINARIES

Throughout this paper (X, 1), (Y, o) and (Z, n) (or X, Y and Z) represent topological spaces (
briefly §9S8) on which no separation axioms are assumed unless otherwise mentioned. For a
subset K of a space X, cl(¥), int(¥) and K° or X | 3 or X — K denote the closure of
K, the interior of K and the complement of X, respectively.

We recall the following definitions which are useful in the sequel.

Definition 2.1

A subset K of a space X is called:

Q) semi-open [10] if K < cl(int(X));
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(i) a-open [13] if K < int(cl(int(K)));

(iii) semi-preopen [1] if K < cl(int(cl(K)));

(iv) regular open [18] if K = int(cl(X)).

The complements of the above mentioned open sets are called their respective closed sets.
Definition 2.2

A subset K of a space X is called a

Q) generalized closed (briefly g-closed) [11] if cl(K) < B whenever K < B and B is
open in X.

(i) generalized semiclosed (briefly gs-closed) [3] if scl(X) < B whenever K < $B and 3B
is open in X.

(iii) a -generalized closed (briefly o g-closed) set [12] if a cl(XK) < B whenever K < B
and 3 is open in X.

(iv) generalized semi-preclosed (briefly gsp-closed) set [9] if spcl(K) < B whenever K <
3B and B is open in X

(V) semi-generalized closed (briefly sg-closed) [5] if scl(K) < B whenever X < $B and B
IS semi-open in X.

The complements of the above mentioned closed sets are called their respective open sets.
3. WEAKLY p-CLOSED SETS

| introduce the definition of weakly p-closed sets in 598 and study the relationships of such
sets.

Definition 3.1
A subset K of a 7S is called
(i) a p-closed (briefly, p-cld) if cl(K) < B whenever K < B and B is sg-open in X.

(i1) a weakly p-closed (briefly, wp-cld) if cl(int(K)) < B whenever K < B and $B is sg-open in
X.
The complements of the above mentioned closed sets are called their respective open sets.

Theorem 3.2

Any closed is wp-closed but converse is not true.
Proof
Let K be a closed set. Then cl(X) = K. Let X < B and B be sg-open. Since int(K) < K,

cl(int(K)) c cl(K) = K. We have cl(int(X)) < K < B whenever K < B and 3B is sg-open.
Hence XK is wp-closed.

Example 3.3

Let X = {ki, ko, ka} and t = {¢, {ki}, {k2}, {k1, k2}, X}. Then the set {ki, k-} is wp-cld set but
not closed in X.
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Theorem 3.4

Any p-closed is wp-closed but converse is not true.

Proof

It is obviously.

Example 3.5

Let X = {Kku, ko, ka} and © = {¢, {ki}, {ko}, {k1, k2}, X}. The set {k1, k2} is wp-
closed set but not p-closed in X.

Theorem 3.6

Any regular closed is wp-closed but converse is not true.

Proof

Let K be any regular closed set and let B be gs-open set containing K. Since K is regular
closed, we have & = cl(int(¥)) < $B. Thus, X is wp-closed.

Example 3.7

Let X = {ki, k2, ks} and © = {9, {ku}, {k2}, {Kz, k2}, X}. The set {ki} is wp-closed but not
regular closed in X.

Theorem 3.8
Any wp-closed is gsp-closed but converse is not true.

Proof

Let K be any wp-closed and 3 be open set containing . Then 3 is a sg-open containing &
and cl(int(¥K)) < B. Since B is open, we get int(cl(int(K))) < B which implies spcl(K) = H v
int(cl(int(K))) < B. Thus, K is gsp-closed.

Example 3.9

Let X = {ky, k2, ks} and t = {¢, {ki}, {ko}, {ki, ko}, X}. Then the set {ki} is gsp-closed but
not wp-closed.

Theorem 3.10
If a subset K of a §PS X is both closed and o g-closed, then it is wp-closed in X.
Proof

Let K be ana g-closed set in X and B be an open set containing K. Then 8B o « cl(K) = K v
cl(int(cl(X))). Since K is closed, B o cl(int(K)) and hence K is wp-closed in X.

Theorem 3.11

If a subset K of a 728 X is both open and wp-closed, then it is closed.

Proof

Since X is both open and wp-closed, & o cl(int(¥K)) = cl(¥) and hence & is closed in X.
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Corollary 3.12

If a subset K of a 528§ X is both open and wp-closed, then it is both regular open and regular
closed in X.

Theorem 3.13

Suppose that B < K < X, B is a gs-closed relative to K and that K is both open and sg-
closed subset of X. Then 8 is gs-closed relative to X.
Proof

Let B < O and suppose that O is open in X. Then 8 < K n O and scla(B) < KN
O. It follows then that K m scl(B) < K » O and K < O U (scl(B))°. Since K is sg-closed in
X, we have scl(K) < O v (scl($8))° since the union of open set and semi-open set is semi-

open. Therefore scl(B) < scl(HK) < O U (scl($B))° and consequently, scl($B) < O. Then B is gs-
closed relative to X.

Corollary 3.14

Let # be both open and sg-closed and suppose that F is closed. Then & n F is
gs-closed.

Proof

HK N Fis closed in & and hence gs-closed in K (Apply Theorem 3.13).
Theorem 3.15
A set K is wp-closed if and only if cl(int()) — K contains no non-empty gs-closed.
Proof

Necessity: Let F be a gs-closed such that F  cl(int(K)) — K. Since F¢is gs-open and & < F¢,
from the definition of wp-closed it follows that cl(int(K)) < F°. ie. F < (cl(int(¥K))). This
implies that F < (cl(int(K))) N (cl(int(X)))° = ¢.

Sufficiency: Let K < G, where G is both closed and sg-open set in X. If cl(int(¥)) is not
contained in G, then cl(int(¥)) m G° is a non-empty gs-closed subset of cl(int(X)) — I, we
obtain a contradiction. This proves the sufficiency and hence the theorem.

Theorem 3.16

Let X be a §PS and K < Y < X. If K is open and wp-closed in X, then X is wp-closed
relative to Y.

Proof

Let X < Y n G where G is gs-open in X. Since XK is wa-closed in X, & < G implies
cl(int(K)) < G. Thatis Y n (cl(int(K))) < Y n G where Y n cl(int(X)) is closure of interior
of XinY. Thus, X is wp-closed relative to Y.

Theorem 3.17

If a subset K of a 598 X is nowhere dense, then it is wp-closed.
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Proof

Since int(X) < int(cl(K)) and K is nowhere dense, int(K) = ¢. Therefore cl(int(¥)) = ¢ and
hence X is wp-closed in X.

The converse of Theorem 3.17 need not be true as seen in the following example.
Example 3.18

Let X = {ki, ko, ks} and © = {¢, {ki}, {kz, ks}, X}. Then the set {ki} is wp-closed but not
nowhere dense in X.

Remark 3.19
The following examples show that wd-closed and semi-closedness are independent.
Example 3.20

Let X = {ki, ko, ks} and t = {9, {ki}, {k2, ka}, X}. The set {k2} is wp-closed but not semi-
closed in X.

Example 3.21

Let X = {ki, k2, k3} and © = {¢, {ki}, {k2}, {k1, k2}, X}. Then the set {k-} is semi-closed set
but not wp-closed in X.

Definition 3.22

A subset K of a 5PS X is called wp-open set if K is wp-closed in X.
Theorem 3.23

Any open set is wp-open.

Proof

Let K be an open set in a §2S X. Then K* is closed in X. By Theorem 3.2 it follows that K*
is wa-closed in X. Hence % is wp-open in X.

The converse of Theorem 3.23 need not be true as seen in the following example.
Example 3.24

Let X = {ki, ko, ks} and © = {¢, {ki}, {kz}, {ks, k2}, X}. The set {ks} is wp-open set but it is
not open in X.

Proposition 3.25

0] Any wp-open is wp-open but converse is not true.

(i) Any regular open is wp-open but converse is not true.

(iii) Any g-open is wp-open but converse is not true.

(iv) Any wp-open is gsp-open but converse is not true.

It can be shown that the converse of (i), (ii), (iii) and (iv) need not be true.
Theorem 3.26

A subset K of a 5PS X is wp-open if G c int(cl(K)) whenever G c K and G is gs-closed.
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Proof

Let K be any wp-open. Then K is wp-closed. Let G be a sg-closed contained in &. Then G°
is a sg-open set containing K°. Since K° is wp-closed, we have cl(int(K°)) < G°. Therefore G
c int(cl(X)).

Conversely, we suppose that G < int(cl(X)) whenever G < J and G is sg-closed. Then G is a
sg-open set containing K¢ and G o (int(cl(X)))°. It follows that G o cl(int(K°)). Hence H° is
wa-closed and so & is wp-open.
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