A Note on Weakly Generalized Closed Sets in Topological Spaces

Dr. K. Karuppiah

Assistant Professor, Department of Mathematics, Government College of Engineering, Bodinayakkanur-625 582, Affiliated to Anna University, Chennai, Tamil Nadu, India.

E-mail: karuppiahmaths@gmail.com

Article Info

Page Number: 481 - 492 Publication Issue: Vol 72 No. 2 (2023)

Abstract: The objective of this paper is to extend the concept of a new class of weakly generalized closed sets called weakly p-closed sets by applying generalized closed sets. I introduce the definition of weakly pclosed sets in topological spaces and study the relationships of such sets.

Article History:

Article Received: 15 October 2023

Revised: 24 November 2023 Accepted: 18 December 2023 **Keywords:** ρ-closed, wρ-closed, gsp-closed, gs-closed, sg-closed.

2020 AMS Subject Classifications: 54A05, 54D15.

1. INTRODUCTION

Levine [11] introduced generalized closed sets in general topology as a generalization of closed sets. Sheik John [17] introduced ω-closed sets in topological spaces. Rayi and Ganesan [16] presented and \ddot{g} -closed sets in general topology as one more generalization of closed sets and the new class of \ddot{g} -closed sets lies between the class of closed sets and the class of gclosed sets. Pious Missier et al. [15] Presented the idea of g'''-closed sets and concentrated on their most basic properties in topological spaces. Sheik John [17] introduced ω-closed sets in topological spaces. Many researchers like Veerakumar [19] introduced ĝ-closed sets in topological spaces.

The objective of this paper is to introduce for a new class of weakly generalized closed sets called weakly p-closed sets by applying generalized closed sets in topological spaces.

2. PRELIMINARIES

Throughout this paper (X, τ) , (Y, σ) and (Z, η) (or X, Y and Z) represent topological spaces (briefly \mathcal{IPS}) on which no separation axioms are assumed unless otherwise mentioned. For a subset \mathcal{K} of a space X, $cl(\mathcal{K})$, $int(\mathcal{K})$ and \mathcal{K}^c or X | \mathcal{K} or $X - \mathcal{K}$ denote the closure of \mathcal{K} , the interior of \mathcal{K} and the complement of \mathcal{K} , respectively.

We recall the following definitions which are useful in the sequel.

Definition 2.1

A subset \mathcal{K} of a space X is called:

(i) semi-open [10] if $\mathcal{K} \subseteq \text{cl}(\text{int}(\mathcal{K}))$;

- (ii) α -open [13] if $\mathcal{K} \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathcal{K})))$;
- (iii) semi-preopen [1] if $\mathcal{K} \subseteq \text{cl}(\text{int}(\text{cl}(\mathcal{K})))$;
- (iv) regular open [18] if $\mathcal{K} = \operatorname{int}(\operatorname{cl}(\mathcal{K}))$.

The complements of the above mentioned open sets are called their respective closed sets.

Definition 2.2

A subset \mathcal{K} of a space X is called a

- generalized closed (briefly g-closed) [11] if $cl(\mathcal{K}) \subset \mathcal{B}$ whenever $\mathcal{K} \subset \mathcal{B}$ and \mathcal{B} is (i) open in X.
- generalized semiclosed (briefly gs-closed) [3] if $scl(\mathcal{K}) \subseteq \mathcal{B}$ whenever $\mathcal{K} \subseteq \mathcal{B}$ and \mathcal{B} (ii) is open in X.
- (iii) α -generalized closed (briefly α g-closed) set [12] if α cl(\mathcal{K}) $\subseteq \mathcal{B}$ whenever $\mathcal{K} \subseteq \mathcal{B}$ and \mathcal{B} is open in X.
- generalized semi-preclosed (briefly gsp-closed) set [9] if $\operatorname{spcl}(\mathcal{K}) \subseteq \mathcal{B}$ whenever $\mathcal{K} \subseteq$ (iv) $\boldsymbol{\mathcal{B}}$ and $\boldsymbol{\mathcal{B}}$ is open in X
- semi-generalized closed (briefly sg-closed) [5] if $scl(\mathcal{K}) \subseteq \mathcal{B}$ whenever $\mathcal{K} \subseteq \mathcal{B}$ and \mathcal{B} is semi-open in X.

The complements of the above mentioned closed sets are called their respective open sets.

3. WEAKLY p-CLOSED SETS

I introduce the definition of weakly ρ -closed sets in \mathcal{IPS} and study the relationships of such sets.

Definition 3.1

A subset \mathcal{K} of a $\mathcal{I}\mathcal{F}S$ is called

- (i) a ρ -closed (briefly, ρ -cld) if $cl(\mathcal{K}) \subset \mathcal{B}$ whenever $\mathcal{K} \subset \mathcal{B}$ and \mathcal{B} is sg-open in X.
- (ii) a weakly ρ -closed (briefly, w ρ -cld) if cl(int(\mathcal{K})) $\subset \mathcal{B}$ whenever $\mathcal{K} \subset \mathcal{B}$ and \mathcal{B} is sg-open in X.

The complements of the above mentioned closed sets are called their respective open sets.

Theorem 3.2

Any closed is wo-closed but converse is not true.

Proof

Let \mathcal{K} be a closed set. Then $cl(\mathcal{K}) = \mathcal{K}$. Let $\mathcal{K} \subseteq \mathcal{B}$ and \mathcal{B} be sg-open. Since $int(\mathcal{K}) \subseteq \mathcal{K}$, $\operatorname{cl}(\operatorname{int}(\mathcal{K})) \subseteq \operatorname{cl}(\mathcal{K}) = \mathcal{K}$. We have $\operatorname{cl}(\operatorname{int}(\mathcal{K})) \subseteq \mathcal{K} \subseteq \mathcal{B}$ whenever $\mathcal{K} \subseteq \mathcal{B}$ and \mathcal{B} is sg-open. Hence \mathcal{K} is wo-closed.

Example 3.3

Let $X = \{k_1, k_2, k_3\}$ and $\tau = \{\phi, \{k_1\}, \{k_2\}, \{k_1, k_2\}, X\}$. Then the set $\{k_1, k_2\}$ is wp-cld set but not closed in X.

Theorem 3.4

Any ρ -closed is w ρ -closed but converse is not true.

Proof

It is obviously.

Example 3.5

Let $X = \{k_1, k_2, k_3\}$ and $\tau = \{\phi, \{k_1\}, \{k_2\}, \{k_1, k_2\}, X\}$. The set $\{k_1, k_2\}$ is wp-closed set but not ρ -closed in X.

Theorem 3.6

Any regular closed is wo-closed but converse is not true.

Proof

Let \mathcal{K} be any regular closed set and let \mathcal{B} be gs-open set containing \mathcal{K} . Since \mathcal{K} is regular closed, we have $\mathcal{K} = \text{cl}(\text{int}(\mathcal{K})) \subseteq \mathcal{B}$. Thus, \mathcal{K} is wp-closed.

Example 3.7

Let $X = \{k_1, k_2, k_3\}$ and $\tau = \{\phi, \{k_1\}, \{k_2\}, \{k_1, k_2\}, X\}$. The set $\{k_1\}$ is wp-closed but not regular closed in X.

Theorem 3.8

Any wp-closed is gsp-closed but converse is not true.

Proof

Let \mathcal{K} be any wp-closed and \mathcal{B} be open set containing \mathcal{K} . Then \mathcal{B} is a sg-open containing \mathcal{K} and $cl(int(\mathcal{K})) \subseteq \mathcal{B}$. Since \mathcal{B} is open, we get $int(cl(int(\mathcal{K}))) \subseteq \mathcal{B}$ which implies $spcl(\mathcal{K}) = \mathcal{K} \cup int(cl(int(\mathcal{K}))) \subseteq \mathcal{B}$. Thus, \mathcal{K} is gsp-closed.

Example 3.9

Let $X = \{k_1, k_2, k_3\}$ and $\tau = \{\phi, \{k_1\}, \{k_2\}, \{k_1, k_2\}, X\}$. Then the set $\{k_1\}$ is gsp-closed but not wp-closed.

Theorem 3.10

If a subset \mathcal{K} of a \mathcal{IPS} X is both closed and α g-closed, then it is wp-closed in X.

Proof

Let \mathcal{K} be an α g-closed set in X and \mathcal{B} be an open set containing \mathcal{K} . Then $\mathcal{B} \supseteq \alpha$ cl(\mathcal{K}) = $\mathcal{K} \cup$ cl(int(cl(\mathcal{K}))). Since \mathcal{K} is closed, $\mathcal{B} \supseteq$ cl(int(\mathcal{K})) and hence \mathcal{K} is wp-closed in X.

Theorem 3.11

If a subset \mathcal{K} of a \mathcal{IPS} X is both open and wo-closed, then it is closed.

Proof

Since \mathcal{K} is both open and wp-closed, $\mathcal{K} \supseteq \operatorname{cl}(\operatorname{int}(\mathcal{K})) = \operatorname{cl}(\mathcal{K})$ and hence \mathcal{K} is closed in X.

495

Corollary 3.12

If a subset \mathcal{K} of a \mathcal{IPS} X is both open and wp-closed, then it is both regular open and regular closed in X.

Theorem 3.13

Suppose that $\mathcal{B} \subseteq \mathcal{K} \subseteq X$, \mathcal{B} is a gs-closed relative to \mathcal{K} and that \mathcal{K} is both open and sg-closed subset of X. Then \mathcal{B} is gs-closed relative to X.

Proof

Let $\mathcal{B} \subseteq O$ and suppose that O is open in X. Then $\mathcal{B} \subseteq \mathcal{K} \cap O$ and $\mathrm{scl}_A(\mathcal{B}) \subseteq \mathcal{K} \cap O$. It follows then that $\mathcal{K} \cap \mathrm{scl}(\mathcal{B}) \subseteq \mathcal{K} \cap O$ and $\mathcal{K} \subseteq O \cup (\mathrm{scl}(\mathcal{B}))^c$. Since \mathcal{K} is sg-closed in X, we have $\mathrm{scl}(\mathcal{K}) \subseteq O \cup (\mathrm{scl}(\mathcal{B}))^c$ since the union of open set and semi-open set is semi-open. Therefore $\mathrm{scl}(\mathcal{B}) \subseteq \mathrm{scl}(\mathcal{K}) \subseteq O \cup (\mathrm{scl}(\mathcal{B}))^c$ and consequently, $\mathrm{scl}(\mathcal{B}) \subseteq O$. Then \mathcal{B} is gs-closed relative to X.

Corollary 3.14

Let $\mathcal K$ be both open and sg-closed and suppose that F is closed. Then $\mathcal K\cap F$ is gs-closed.

Proof

 $\mathcal{K} \cap F$ is closed in \mathcal{K} and hence gs-closed in \mathcal{K} (Apply Theorem 3.13).

Theorem 3.15

A set \mathcal{K} is wo-closed if and only if $cl(int(\mathcal{K})) - \mathcal{K}$ contains no non-empty gs-closed.

Proof

Necessity: Let F be a gs-closed such that $F \subseteq cl(int(\mathcal{K})) - \mathcal{K}$. Since F^c is gs-open and $\mathcal{K} \subseteq F^c$, from the definition of wp-closed it follows that $cl(int(\mathcal{K})) \subseteq F^c$. ie. $F \subseteq (cl(int(\mathcal{K})))^c$. This implies that $F \subset (cl(int(\mathcal{K}))) \cap (cl(int(\mathcal{K})))^c = \phi$.

Sufficiency: Let $\mathcal{K} \subseteq G$, where G is both closed and sg-open set in X. If $cl(int(\mathcal{K}))$ is not contained in G, then $cl(int(\mathcal{K})) \cap G^c$ is a non-empty gs-closed subset of $cl(int(\mathcal{K})) - \mathcal{K}$, we obtain a contradiction. This proves the sufficiency and hence the theorem.

Theorem 3.16

Let X be a \mathcal{IPS} and $\mathcal{K} \subseteq Y \subseteq X$. If \mathcal{K} is open and wp-closed in X, then \mathcal{K} is wp-closed relative to Y.

Proof

Let $\mathcal{K} \subseteq Y \cap G$ where G is gs-open in X. Since \mathcal{K} is $w\tilde{a}$ -closed in X, $\mathcal{K} \subseteq G$ implies $cl(int(\mathcal{K})) \subseteq G$. That is $Y \cap (cl(int(\mathcal{K}))) \subseteq Y \cap G$ where $Y \cap cl(int(\mathcal{K}))$ is closure of interior of \mathcal{K} in Y. Thus, \mathcal{K} is wp-closed relative to Y.

Theorem 3.17

If a subset \mathcal{K} of a \mathcal{IPS} X is nowhere dense, then it is wp-closed.

Proof

Since $int(\mathcal{K}) \subseteq int(cl(\mathcal{K}))$ and \mathcal{K} is nowhere dense, $int(\mathcal{K}) = \phi$. Therefore $cl(int(\mathcal{K})) = \phi$ and hence \mathcal{K} is wo-closed in X.

The converse of Theorem 3.17 need not be true as seen in the following example.

Example 3.18

Let $X = \{k_1, k_2, k_3\}$ and $\tau = \{\phi, \{k_1\}, \{k_2, k_3\}, X\}$. Then the set $\{k_1\}$ is wp-closed but not nowhere dense in X.

Remark 3.19

The following examples show that $w\tilde{a}$ -closed and semi-closedness are independent.

Example 3.20

Let $X = \{k_1, k_2, k_3\}$ and $\tau = \{\phi, \{k_1\}, \{k_2, k_3\}, X\}$. The set $\{k_2\}$ is wp-closed but not semi-closed in X.

Example 3.21

Let $X = \{k_1, k_2, k_3\}$ and $\tau = \{\phi, \{k_1\}, \{k_2\}, \{k_1, k_2\}, X\}$. Then the set $\{k_2\}$ is semi-closed set but not wp-closed in X.

Definition 3.22

A subset \mathcal{K} of a \mathcal{IPS} X is called wp-open set if \mathcal{K}^c is wp-closed in X.

Theorem 3.23

Any open set is wo-open.

Proof

Let \mathcal{K} be an open set in a \mathcal{IPS} X. Then \mathcal{K}^c is closed in X. By Theorem 3.2 it follows that \mathcal{K}^c is $w\tilde{\alpha}$ -closed in X. Hence \mathcal{K} is $w\rho$ -open in X.

The converse of Theorem 3.23 need not be true as seen in the following example.

Example 3.24

Let $X = \{k_1, k_2, k_3\}$ and $\tau = \{\phi, \{k_1\}, \{k_2\}, \{k_1, k_2\}, X\}$. The set $\{k_3\}$ is wp-open set but it is not open in X.

Proposition 3.25

- (i) Any wρ-open is wρ-open but converse is not true.
- (ii) Any regular open is wρ-open but converse is not true.
- (iii) Any g-open is wρ-open but converse is not true.
- (iv) Any wp-open is gsp-open but converse is not true.

It can be shown that the converse of (i), (ii), (iii) and (iv) need not be true.

Theorem 3.26

A subset \mathcal{K} of a \mathcal{IPS} X is wp-open if $G \subseteq \operatorname{int}(\operatorname{cl}(\mathcal{K}))$ whenever $G \subseteq \mathcal{K}$ and G is gs-closed.

497

Proof

Let \mathcal{K} be any wp-open. Then \mathcal{K}^c is wp-closed. Let G be a sg-closed contained in \mathcal{K} . Then G^c is a sg-open set containing \mathcal{K}^c . Since \mathcal{K}^c is wp-closed, we have $cl(int(\mathcal{K}^c)) \subseteq G^c$. Therefore $G \subseteq int(cl(\mathcal{K}))$.

Conversely, we suppose that $G \subseteq \text{int}(\text{cl}(\mathcal{K}))$ whenever $G \subseteq \mathcal{K}$ and G is sg-closed. Then G^c is a sg-open set containing \mathcal{K}^c and $G^c \supseteq (\text{int}(\text{cl}(\mathcal{K})))^c$. It follows that $G^c \supseteq \text{cl}(\text{int}(\mathcal{K}^c))$. Hence \mathcal{K}^c is w \tilde{a} -closed and so \mathcal{K} is w ρ -open.

REFERENCES

- [1] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- [2] Andrijevic, D.: Some properties of the topology of α -sets, Mat. Vesnik, 36 (1984), 1-10.
- [3] Arya, S. P. and Nour, T. M.: Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (1990), 717-719.
- [4] Arya, S. P. and Gupta, R.: On strongly continuous mappings, Kyungpook Math. J., 14 (1974), 131-143.
- [5] Bhattacharya, P. and Lahiri, B. K.: Semi-generalized closed sets in topology, Indian J. Math., 29(3) (1987), 375-382.
- [6] Carnation, D.: Some properties related to compactness in topological spaces, Ph. D. Thesis, University of Arkansas, 1977.
- [7] Crossley, S. G. and Hildebrand, S. K.: Semi-closure, Texas J. Sci., 22 (1971), 99-112.
- [8] Devi, R.: Studies on generalizations of closed maps and homeomorphisms in topological spaces, Ph. D Thesis, Bharathiar University, Coimbatore (1994).
- [9] Dontchev, J.: On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16 (1995), 35-48.
- [10] Levine N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [11] Levine N.: Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (1970), 89-96.
- [12] Maki, H., Devi, R. and Balachandran, K.: Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15 (1994), 51-63.
- [13] Njastad, O.: On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [14] Noiri, T., Maki, H. and Umehara, J.: Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Math., 19 (1998), 13-20.

- Pious Missier, S., Ravi, O. and. Herin Wise Bell, P.: g'''-closed sets in topology (communicated).
- Ravi, O. and Ganesan, S.: \ddot{g} -closed sets in topology, International Journal of Computer Science and Emerging Technologies, 2(3) (2011), 330-337.
- Sheik John, M.: A study on generalizations of closed sets and continuous maps in [17] topological and bitopological spaces, Ph. D Thesis, Bharathiar University, Coimbatore, September 2002.
- Stone, M. H.: Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374-481.
- Veera Kumar M. K. R. S.: \hat{g} closed sets in topological spaces, Bull. Allahabad Math. Soc., 18 (2003), 99-112.