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Abstract :  

Non-Singular Modules over serial rings are equivalent to Modules with a 

unique in decomposable decomposition. They form closed subset of the 

module lattice. The ring of endomorphism of non-singular modules is serial 

ring.  
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Introduction : 

 Serial rings have been studied developed criteria which ensure that a uniform module over a serial ring 

with Krull dimension is uniserial. We generalize these results, and in particular free them from the Krull 

dimensional hypothesis. At the same time we provide simplified proofs. This is accomplished by formulating 

the statements and arguments in terms of variants of non-singularity.  

 We emphasize that all these criteria are sufficient but not necessary. Effective necessary and sufficient 

tests, for when a single uniform module over a serial ring is uniserial, appear not to be known.  

Along the way, we show that any semi prime right serial is a direct sum of prime rings, and we obtain facts 

about the spectrum of a serial ring. The later ones will also be useful in subsequent paper, Which gives a fairly 

comprehensive structure theory for arbitrary serial rings.  

Preliminaries  

All rings considered here have an identity element, and all modules are unitary right modules, unless specified 

differently.  

For an R-module M, Z(M) denote the singular sub module  and the injective hull. N   M, N  M,  and N   M 

indicate that N is a submodule, proper sub module, and essential submodule of M, respectively.  

A nonzero cyclic module with a unique maximal submodule is called a local module. A nonzero x of an 

arbitrary module is called local if xR is a local module.  

We call a module uniserial if its submodules form a chain, and serial if it is the direct sum of uniserial modules. 

A ring is called right (left) serial if it is serial as ring (left) module over itself; it is called serial if is left and right 

serial. Every left or right serial ring is semi perfect. Over a right serial ring, any element of any module is the 

sum of local elements. In a uniserial module, any element is local.  

J will always denote the Jacobson radical of the ring R. The letter e, with and without subscripts, is reserved for 

indecomposable idempotents of R.  
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The transfinite powers of the Jacobson radical are defined inductively as J() =  J()n,  for 

ordinals,  ,  . (that is  simplifies to J() =  J (-1)n  if  is non-limit ordinal, and to J() =  J() 

if  is a limit ordinal.) 

Theorem 1.1 Let R be a serial ring, P a finitely generated projective R-moudle, and M a finitely generated 

submodule of P.  Then there is decomposition P= P1
  ...  Pn

 into indecomposable projective such that 

M=M  P1  ...  M  Pn.  

Proposition 1.2 For any R-module M over a serial R, M/Z(M) is a non-singular R/Z(R)-module. In particular, 

R/Z (R) itself is a (right) nonsingular ring.  

Proposition 1.3 Every nonsingular uniform module over a serial ring is uniserial.  

Theory 1.4 A serial ring is left and right nonsingular if it is left and/or right semihereditary. If so, then every 

finitely generated nonsingular module is projective.  

Recall that a ring is called right Goldie if it has finite Goldie dimension, and ascending chain condition on right 

annihilators.  

A right nonsingular ring with finite Goldie dimension is right Goldie. The converse holds true provided the ring 

is semi prime. 

Consequently, a semiprime serial ring is left and/or right Goldie if it is left and/or right nonsingular. Iff it is left 

and/or right semihereditary, iff it has ascending chain condition on left and/or right annihilators.  

Proposition  1.5 If xR is a local module over a semi perfect ring R, then there is an indecomposable idempotent 

e such that x=xe.  

Proof. Let f : P → xR be a projective cover, and define g : R → xR via g (r) = xr. There exists an epimorphism h 

: R → P such that fh = g. Then h splits : R = eRker h. Consequently x = g(1) = fh(1) = fh(e) = fh(1)e = xe.  

2. Non- Singular Modules Over Serial Rings 

This section contains a few technical observations, concerning the modules of the title.  

Lemma 2.1  Let I be an ideal, and A a right ideal, of an arbitrary ring, such that I     

(i) If A/I  R/I, then A  R.  

(ii) If M is a nonsingular R-module and MI = 0, then M is a non-singular R/I-module.  

Lemma 2.2  A nonzero projective module over a serial ring is not singular.  

Proof. As a serial ring is semi perfect, a projective module is the direct sum of sub modules of the form eR. The 

annihilator (1-e) R of e is not essential, and therefore e Z (eR).  

Lemma 2.3  Over a serial ring, a module is nonsingular if every local/finitely generated sub modules is 

projective.  

Proof. Let N is a finitely generated sub modules of the nonsingular R-module M, and let Z = Z (R). Clearly 

NZ=0, and therefore N is non-singular R/Z-module, by (2.1). Now R/Z is a nonsingular ring. Therefore N is a 

projective R/Z-module. Thus N is a direct sum of sub modules of the form eR/eZ. Since these eR/eZ are even 

nonsingular and R-modules, that is implies that's  eZ=0. Consequently N is a projective R-module.  
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Lemma 2.4 For an ideal I of a serial ring R, the following are equivalent :  

(i) For every indecomposable idempotent e, eI=0 or every finitely generated (=cyclic) submodule of eR/eI is a 

project R/I-module.  

(ii) For every indecomposable idempotent e, eI=0 or eR/eI is a non-singular R/I-module.  

(iii) For every indecomposable idempotent e, and every x eR - eI, xI = eI holds.  

(iv) For every uniserial module M and x  M - MI, xI = MI holds.  

Proof. (i) and (iv) for given x  M - MI, we have to show xI  yI for all y  M. This is trivially true if xR  yR 

or if yI =0. We are left with the case xR  yR and yI  0.  

The (1.5) we have e with y  ye. Clearly eI  0. The obvious empimorphism eR → yR induces an isomorphism 

eR/eI  yR/yI. The inclusion xR  yR induces a homomorphism xR/xI → yR/yI  eR/eI. Its image, a cyclic 

submodule of eR/eI, is a projective R/I-module, by hypothesis. Thus the homomorphism splits, and we conclude 

xI = yI, xR is uniserial.  

(iv) implies (iii) : Trivial.  

(iii) implies (i) : Let eI  0 and consider arbitrary x eR - eI. By hypothesis, xI = eI  0. With x = xe from (1.5), 

we obtain again e R/eI  xR/xI. Thus the arbitrary cyclic sub module xR/xI = xR/el of eR/eI is a projective R/I-

module.  

DEFINITION. We call an ideal I of a serial ring R (right) almost non-singular if it has the equivalent.  

Examples. The class of almost nonsingular ideals is closed under arbitrary sums and down directed 

intersections.   

That every nonsingular ideal is almost nonsingular. In particular, every Goldie semiprime ideal, and specifically 

J(R) = J(0), is almost nonsingular.  

In particular this shows that all J(),   0 are almost nonsingular. It also shows that  is almost 

nonsingular for any ideal I. Specially every idempotent ideal is almost nonsingular.  

Corolllary 2.5 If I is a right almost nonsingular ideal is a serial ring R, and M a uniserial R-module with MI  0, 

then M/MI is a nonsingular R/I-module.  

Proof.  Consider any 0  M/MI, and select e with xe = x by (1.5). By (2.4) we have 0  MI = xI = xeI, in 

particular eI  0.  that's  yields eR/eI  xR/xI = xR/MI = , as before. Thus cyclic submodule of M/MI is a 

projective R/I-module, and therefore M/MI itself is a non-singular R/I-module.  

3. Prime Ideal In Serial Rings 

We develop some elementary facts about the subject of the title. More details will be given in a subsequent 

paper.  

Lemma 3.1  Any two incomparable prime ideals of a serial ring are co-maximal.  

Proof. For any indecomposable idempotent e, we have eP  eQ or eQ  eP. If P, Q are incomparable prime 

ideals, we deduce e  Q or e  P, respectively. Therefore, in any case, e(P+Q) = eR. Consequently P + Q = R.  

Proposition 3.2  Let P, Q be prime ideals of a right serial ring R. Assume there is a uniserial (or hollow) module 

M such that MP  M and MQ  M. Then P, Q are comparable.  
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We fix, for the following discussion, a specific decomposition 1 =  of the identity of a right serial 

ring R into indecomposable orthogonal idempotent.  

Lemma 3.3  Let P, Q be prime ideals of the right serial ring Rs.  

(i) If ei
  P implies ei

  Q , then P, Q are comparable.  

(ii) If , in addition, there is some ei
  Q - P, then P  Q.  

Proof. (i) Suppose P  Q. Then there is ei
 such the ei P  ei Q. Thus ei  Q (as otherwise ei P ⊃ ei Q = eiR). By 

hypothesis we conclude ei  P. Thus P  ei P ⊃ ei Q implies P  Q.  

(ii) Now obvious.  

We associate, with any subset T of { e1, ...., en}, the collection P (T) of prime ideals P with P  { e1, .......,  en} = 

T. Note that P (T) may be empty. By (3.3), each P (T) is a chain; we shall call the nonempty P (T) the towers of 

spec R. Again by (3.3), for two towers P (Ti), T1  T2 holds if P1  P2 holds for some  Pi  P (Ti).  

We record a number of simple observations concerning the inclusion graph T = { T : P (T)  }. Everything 

follows easily from (3.1) - (3.3). 

(i) T is a finite disjoint union of rooted trees.  

(ii) The roots correspond to the minimal prime ideals.  

(iii) The leaves correspond to the maximal ideals.  

(iv) The trees branch properly (i.e., at least three incident edges) at each vertex which is neither a root nor a leaf.  

(v) The spectrum is obtained by replacing the vertices T by the towers P (T).  

Proposition 3.4 Every right serial semiprime ring is a direct sum of prime rings.  

Proof  As the spectrum consists of finitely many chains, there are only finitely many minimal primes, say Q1, 

...., Qm. Their intersection  equals zero.  

Definition. Let P, Q be prime ideals of a right serial ring R. We call Q a (right) successor of P [and  P a (right) 

predecessor of Q] if ePQ  eP  eR holds for some indecomposable idempotent e of Rs.  

Lemma 3.5  Let Q, P be two incomparable prime ideals of a right serial ring R. If Q is a successor of P, then 

ePQ  eP  eR holds for all indecomposable idempotents e  P.  

Proof. We are given one e with ePQ  ep  eR; clearly e  P. We know that xP = eP holds for all x  eR - eP.  

We have xP  eP  xR  eR; so xP  eP leads to eP2  xP  eP, Which together with ePQ  eP contradicts.  

Consider any other e  P. Then eRe P, and there is x0  eRe - P. The first consideration shows x0P = eP, and 

this implies eRe = eP. Now We have e PQ  e'P [ since e'PQ = e'P leads to the contradiction eP = eRe' P = eRe' 

pQ = ePQ  eP], and therefore e' PQ  e'P  e'R  

Lemma  3.6  Let P  Q be prime ideals of a serial ring R. Then Q is a successor of P is and only if PQ  P. In 

particular, this cannot happen if P is Goldie and P  Q.  
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Proof. Q is a successor of P if PQ  P  Q = P. If P is Goldie, hence (almost) nonsingular, it is shows that eAP 

= eP for all e and all ideal A ⊃ P. We conclude AP = P, and symmetrically PA = P. In particular, if Q ⊃ P, then 

Q cannot be a successor of P.  

The next corollary shows that the successor relation between incomparable primes is symmetric, and occurs 

only rarely.  

Corollary 3.7 Let P and Q be two incomparable prime ideals of a serial ring.  

(i) Q is a successor of P is and only if P is a left successor of Q.  

(ii) If so, then Q and P contain the same prime ideals properly (and are in particular the minimal members of 

their respective towers);  

(iii) Moreover, Q and P are Goldie, and determine each other uniquely.  

Proof.  

(i) Trivial.  

(ii) Consider any prime Q'  P. We have ePQ  eP  eR for some e. If eP = ePQ', we deduce e  Q'  P hence 

eP = eR, a contradiction. Thus  ePQ'  eP.  applied to M = eP, shows that Q and Q' are comparable. As Q  Q' 

leads to the contradiction Q  P, we conclude Q'  Q.  

(iii) To see that P is Goldie, consider any e  P.  says that  ePQ  eP  eR, and in particular eP  0. The first 

claim in the proof of (3.5) establishes xP = eP for all x  eR - eR. Then the implication from (iii) to (i) in the 

proof of (2.4) shows that eR/eP is a nonsingular R/P-module. Thus R/P is a right nonsingular ring, and P is 

Goldie.  

Le Q1, Q2 be successors of P, both incomparable with P. Then ePQi  eP  eR holds for all e  P and i = 1, 2 by 

(3.5). Corollary (3.2) shows that Q1 and Q2 are comparable. If Q1  Q2 , (ii) yields Q1  P, contrary to the 

incomparability assumption. Similarly Q2  Q1 is impossible; hence Q1 = Q2.  
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