Enhancing Urban Train Transportation Efficiency: Design And Implementation Of Context-Aware Applications Empowered By Wireless Sensor Networks

Shiv kumar¹, Dr. A. S. Rathore²

Research Scholar

Department of Electronics and Communications Engineering , Sri Satya Sai University of Technology & Medical Sciences, Sehore,MP,India

Research Guide

Department of Electronics and Communications Engineering , Sri Satya Sai University of Technology & Medical Sciences, Sehore,MP,India

Article Info

Page Number: 13556 - 13567

Publication Issue: Vol 71 No. 4 (2022)

Abstract

The effective operation of urban train transportation systems in densely populated areas is contingent upon their efficiency and dependability. Context-aware application integration with wireless sensor network (WSN) technology is a viable way to improve such transportation networks' efficiency and usefulness. Using the capabilities of WSN technology, this paper demonstrates the design and implementation of context-aware applications especially suited for urban rail transit contexts. The study starts with a detailed examination of the problems and present situation of urban rail transportation systems. The theoretical foundations of context-aware computing and the use of WSNs in transportation scenarios are then covered in detail. Through an extensive analysis of the literature, this paper lays the groundwork for the upcoming stages of design and execution. The architecture of the system has been carefully designed to meet the special needs of urban rail transportation, emphasizing smooth integration, reliable data gathering, and effective processing. Particular focus is placed on sensor placement and selection tactics, taking into account variables including data accuracy, power consumption, and climatic conditions. Algorithms for data processing and gathering are created to efficiently manage streams of real-time sensor data. Methods for context inference, aggregation, and data fusion are used to extract valuable information from the gathered data. Furthermore, the investigation of machine learning techniques is conducted to improve the system's capacity to adjust to changing transportation situations. Next, context-aware apps are created to cater to the various requirements of stakeholders, including as operators, maintenance personnel, and passengers. These apps offer actionable insights, predictive analytics, and real-time data to enhance the overall effectiveness, security, and comfort of urban rail travel. Validating the functionality and performance of the proposed system is mostly dependent on integration and testing. An overview of the major discoveries, contributions, and potential future study areas round out the paper. This research offers up new opportunities for innovation in public transportation systems, opening the path for more intelligent, effective, and sustainable urban mobility solutions by bridging

Article History

Article Received:15 September 2022

Revised: 15 October 2022

Accepted:20 December 2022

2326-9865

the gap between context-aware computing and urban rail transit.

Keywords: Wireless sensor network, Transportation systems, Context-aware computing,

Introduction

The need for effective and sustainable transportation systems has increased at a rate never seen before due to the world's growing urbanization. Among the several forms of urban transportation, trains are essential for mass transit since they provide an affordable and sustainable way to ease traffic and cut down on pollution in crowded cities. However, there are several obstacles to overcome in order to effectively operate and maintain urban rail transportation networks. These obstacles include everything from guaranteeing passenger comfort and safety to maximizing service efficiency and dependability. Given this, integrating wireless sensor network (WSN) technology with context-aware apps shows great potential for resolving these issues and improving the overall efficiency of urban rail transportation systems. For millions of people worldwide, urban rail transit networks are lifelines, offering a crucial connection between residential neighbourhoods, business centres, and other important locations. These systems are distinguished by intricate infrastructures made up of trains, stations, tracks, signalling systems, and auxiliary buildings. For the efficient movement of people and products, these infrastructures must all function flawlessly. However, due to their size and intrinsic complexity, metropolitan rail transportation networks frequently experience service interruptions, operational inefficiencies, and safety issues, calling for creative solutions to boost their dependability and performance.

The management of urban rail transportation has traditionally placed a strong emphasis on reactive maintenance techniques and physical intervention, both of which are sometimes insufficient to deal with the dynamic and unpredictable character of urban surroundings. In addition, the absence of up-to-date information about crucial operational factors including train movements, passenger loads, and infrastructure conditions impedes operators' capacity to make well-informed choices and anticipate potential problems before they arise. Because of this, the necessity for intelligent systems that can use contextual data and facilitate datadriven decision-making in urban rail transportation situations is becoming more and more apparent. The advent of wireless sensor networks and context-aware computing has created new opportunities to completely transform the management, monitoring, and optimization of urban rail transportation systems. Context-aware apps integrate data from the user's choices, the environment in which they operate, and the situational context to provide individualized services, improve situational awareness, and streamline decision-making. In conjunction with wireless sensor networks, these technologies can yield unparalleled insights into the operational dynamics of urban rail transportation systems by facilitating widespread and instantaneous data gathering from dispersed sensors positioned across the transportation infrastructure. Although wireless sensor networks and context-aware computers have made tremendous strides, there is still a vacuum in their use in the field of urban rail transportation. The majority of previous research has been restricted to laboratory settings or has concentrated on discrete areas of train operations, failing to take into account the dynamic

13557

and complex character of real-world transportation contexts. Furthermore, there are particular technological, operational, and legal difficulties associated with designing and implementing context-aware applications for urban rail transportation systems that have not yet been thoroughly investigated and resolved.

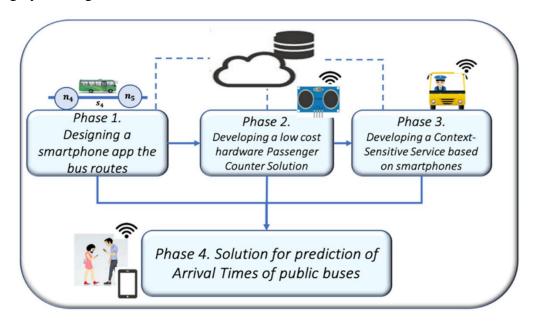


Figure 1 A Smart Information System for Passengers of Urban Transport Based on IoT

In urban rail transportation contexts, the following are major problems in creating and deploying context-aware applications with wireless sensor network support: Contextual information is not readily available: Urban rail transportation systems function in dynamic and varied contexts that are defined by a range of operational parameters, passenger demographics, and environmental elements including traffic and weather. Real-time contextual information processing and capture is highly challenging because of the scarcity of sensors and the complexity of urban environments. Large geographic regions are covered by urban rail transportation networks, which are made up of several linked subsystems, each with its own set of sensors, data formats, and communication protocols. The effective implementation of context-aware applications depends on ensuring smooth integration and interoperability among diverse sensor networks while preserving scalability and flexibility. Data security and privacy are major problems in urban rail transportation contexts due to the widespread use of wireless communication technology and sensors. This information includes personal data, preferences, and traveller movements. Building strong security features and privacy-protecting algorithms to protect data integrity and confidentiality is essential to winning over the public and complying with regulations. This paper aims to tackle the difficulties and take advantage of the possibilities that arise when context-aware apps and wireless sensor network (WSN) support are integrated in urban train transportation contexts. The paper specifically seeks to provide a thorough grasp of the conditions, limitations, and possible advantages related to the implementation of context-aware systems in the context of urban rail transportation.

In order to find gaps and opportunities for innovation in the design and implementation of such systems, the paper undertakes a detailed study of the body of current literature and research endeavours. This research aims to contribute useful solutions that improve the effectiveness, safety, and user experience of urban train transportation networks through the conceptualization, development, and evaluation of a novel system architecture, sensor deployment strategies, and context-aware applications tailored to the particularities of urban train transportation. The paper also seeks to offer perspectives and suggestions for future lines of inquiry and useful applications in this developing topic. This paper focuses on using wireless sensor networks (WSNs) to provide context-aware apps that can give real-time insights and intelligent decision assistance in order to address these issues. The study includes a thorough literature analysis to lay the groundwork for understanding wireless sensor networks, context-aware computing, and urban transportation.

Building on this knowledge, the paper outlines a system architecture and conceptual framework that are specifically designed to meet the needs of urban rail transit contexts. It looks at methods for choosing and implementing sensors, with a focus on data privacy, scalability, and interoperability. In order to extract useful insights from sensor data, the paper also explores the creation of algorithms for data gathering, processing, and context inference. The paper aims at improving operational efficiency, safety, and user experience in urban rail transportation networks by designing and implementing context-aware apps for different stakeholders, such as passengers, operators, and maintenance staff. Simulation studies and real-world deployment trials are used to assess the usability and performance of the proposed system. The ultimate goal of this study is to provide insightful analysis and workable solutions that open the door to more intelligent, robust, and sustainable urban transportation systems.

Literature Review

Y. Dia (2024): The Internet of Things of the future will be powered by Zero Power gadgets. Their main difficulty is operating distance from the closest RF source, whether they are actuated by a remote reader or taped from ambient radiation. Unfortunately, because of their minimal activation power (also known as reading sensitivity), these devices can only be turned on within a few tens of meters of each other. With this approach, the harvesting power is lowered to a new level of -28dBm (1.5 $\hat{1}^1$ 4W). We present a wireless motion sensor that uses as little as 120 mV of DC voltage and 0.72 $\hat{1}^1$ 4J of stored energy when it operates in burst mode. By biasing a tunnel diode Voltage-controlled oscillator (VCO) with a four-stage rectifier, this effective operation is accomplished without the need for any DC/DC conversion.

N. Li (2024): Node localization is a crucial task for wireless sensor networks (WSN), and accurate decision-making is dependent on knowing the nodes' coordinate coordinates. Irregular regions can be complicated and impacted by environmental complexity and inhomogeneity dis specific applications, such as smart cities, environmental monitoring, or industrial automation. The final positioning result of the algorithm may differ greatly from the real position due to communication pathways deviating from the ideal straight line and

coverage gaps between the anchor nodes and the nodes to be found. This study suggests a non-ranging node localization approach (RANP-PSO) for irregular areas based on anchor node pair selection and the PSO algorithm in order to address this issue. By using the hop count constraint mechanism for distance estimation, the approach first chooses anchor node pairs with better reliability parameters for the nodes to be identified; it then applies additional restrictions on the computed distances using the regularized least squares method; Ultimately, the PSO method is applied to optimize the target node's coordinates in order to solve for the node's location. In comparison to the AEML and LRAQS algorithms, the BDMCL algorithm, the MSVR-DV-Hop algorithm, and the proposed algorithm, the root mean square error is reduced by roughly 11.94%, 7.26%, and 0.69%, respectively, when the distribution density of nodes is 0.008, the communication radius of nodes is 30m, and the proportion of anchor nodes is 20%. This illustrates the suggested algorithm's superiority in terms of localization precision.

L. Shi (2024): A crucial technological advancement for the efficient operation of wireless sensor networks in various settings is localization. As cyberattacks are common in real-world application settings, there is increasing worry about how to guarantee localization accuracy in the face of denial-of-service (DoS) assaults. Current studies concentrate on the distributed localization of static sensor networks during denial-of-service attacks. The goal of this paper is to further investigate distributed localization in DoS-attackable mobile sensor networks. A problem for effective localization arises from DoS attacks, which can cause intermittent connection between sensor nodes. This leads to a time-varying feature for communication networks among all sensor nodes. This article suggests a distributed iterative localization approach that uses distance measurements and relative barycentric coordinates to get around this problem. Full convergence, rate, and complexity analysis of the localization method is provided based on a hybrid technique consisting of sub-stochastic matrix and graph composition. Finally, experimental examples validate the theoretical conclusions. P. Popovsk (2024): The evolution of wireless networks beyond 5G leads to a greater convergence of the digital and physical worlds by encompassing both sensing and communication. The presence of combined digital and physical domains begs important problems about causation, temporal ordering, and event synchronization. The temporal issues brought about by the wireless infrastructure's transformation into a multisensory entity are discussed in this study. Accurate timestamping and temporal forensics become essential as real-time interactions and applications—like digital twins, extended reality, and the metaverse—become more and more prevalent. In order to simulate human multisensory perception, the study presents a model that uses twi. It then goes over the implications of this model for temporal forensics and imposing timing limits in real-time systems. In the context of wireless systems moving towards perceptive networks, the study investigates trade-offs, probabilities, and constraints for simultaneity and causality violation. This study highlights the importance of timestamping in the dynamic wireless environment, offers new research directions for systems that integrate sensing and communications, and sheds light on ramifications at the system level.

P. Caruso (2024): To maintain high security and proper infrastructure maintenance, monitoring facilities such as gas or water pipelines has become more and more important in recent years. The constant monitoring of the pipeline network is a significant challenge due to its vast size. Specifically, it is essential to keep an eye on the cathodic protection voltage, which keeps the pipeline free from corrosion and prevents significant harm to the infrastructure. To continually monitor the pipeline network, a communication channel is required. The majority of pipeline monitoring systems communicate the measures via wireless communication, such as Wi-Fi, GPRS (General Packet Radio Service), or GSM (Global System for Mobile Communications) technology. By their very nature, these systems are costly to build, and not all of the pipeline is covered by the mobile carriers' signals.

Methodology

In order to systematically address the difficulties involved in integrating context-aware applications with wireless sensor networks (WSNs) in the context of urban train transportation, the paper "Design and Implementation of Context-Aware Applications with Wireless Sensor Network Support in Urban Train Transportation Environments" employs a particular methodology. The study technique is broken down into many important stages, all of which have the same goal: to accomplish particular goals and guarantee that the suggested system is implemented successfully. The technique starts with a thorough analysis of the body of work in the domains of wireless sensor networks, context-aware computing, and urban rail transportation. Understanding the present state of the art, recognizing important issues, and investigating potential solutions are all made possible by this survey of the literature.

In parallel, a comprehensive requirements study is carried out to specify the precise requirements and goals of the suggested system. The criteria are greatly influenced by user feedback and stakeholder participation, which guarantees that the system will meet the various demands of operators, passengers, and maintenance staff. The process moves on to the creation of a thorough system architecture based on the knowledge gathered from the requirements analysis and literature study. This architecture supports the integration of context-aware applications with wireless sensor networks and is specifically designed to meet the demands of the urban rail transportation environments. Important elements of the architecture are recognized and defined, such as sensors, actuators, DPUs, and communication protocols. To support the system's flawless functioning in real-world circumstances, scalability, interoperability, and dependability are prioritized.

After the system architecture is established, the technique focuses on the strategies for selecting and deploying sensors. A methodical methodology is utilized to assess and choose sensors according to how well they can capture pertinent contextual data, such vibration, temperature, humidity, and occupancy. During the selecting process, factors including communication range, battery consumption, and sensor accuracy are taken into account. Deployment methods are created when the sensors are selected to guarantee that they are placed as optimally as possible within train carriages, stations, and the surrounding

infrastructure. In order to maximize coverage and data accuracy, appropriate places for sensor installation are identified through site assessments and feasibility studies. The technique includes the development of algorithms for real-time data collecting, processing, and context inference. The huge volume of sensor data produced by the deployed sensors is something that these algorithms are made to manage. They do this by removing noise, combining data, and producing insightful conclusions. In order to improve the system's capacity for adapting to changing transportation circumstances and allowing predictive analytics and decision assistance, machine learning approaches are investigated. Extensive experiments are carried out to verify the efficiency and precision of the algorithms in a range of operational scenarios, guaranteeing dependable performance in practical implementations. As part of the technique, context-aware apps are designed and developed to meet the requirements of various stakeholders, such as operators, maintenance staff, and passengers. The design process is guided by a thorough analysis of user needs and use scenarios, guaranteeing that the apps offer pertinent and useful information.

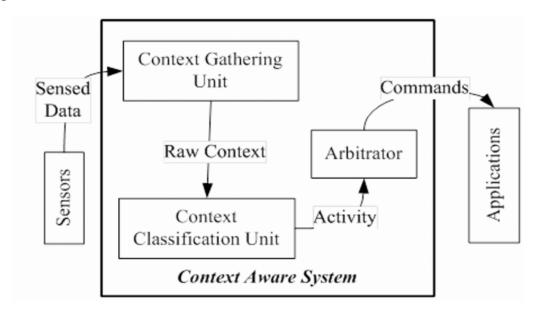


FIGURE 2 Components of a context aware system

Using insights from the installed sensors and data processing algorithms, user interfaces are designed to offer simple access to contextual data in real time. Features like tailored passenger services, real-time warnings, and predictive maintenance suggestions are made possible by the implementation of application logic. The produced parts—sensors, algorithms, and context-aware apps—are combined according to the approach to form a coherent system. To assess the integrated system's performance, dependability, and functionality, extensive testing is done. To make sure that all the parts function as a whole, this testing includes system, integration, and unit tests. Experiments with real-world deployment are carried out to verify the system's performance and usability in real-world urban rail transportation settings. We ask for user input and conduct acceptance testing to find out what needs to be improved and refined.

By using this methodical approach, the research hopes to close the gap between urban rail transportation and context-aware computing, offering workable solutions to improve the effectiveness, security, and user experience of these vital transportation networks. Because the process is iterative, it may be continuously improved and optimized in response to feedback from the real world and changing technology environments. Using this value, a circuit that matches the function generator output to the communication channel's impedance may be designed. The proposed circuit must provide half-duplex bidirectional communication. A low-frequency circulator needs to be made since the pipe's available low frequencies for transmission are limited. Operational amplifiers will make up the bidirectional circuit given the frequencies involved.

By matching the pipeline input impedance with the signal generator output impedance, the circulator that is being provided enables an increase in the transmission distance that can be achieved when utilizing the pipeline as a communication channel. In this stage of the process, algorithms are designed for real-time data collecting, processing, and context inference. The algorithms are engineered to manage the heterogeneous and copious data streams produced by the strategically positioned sensors, eliminating extraneous information, consolidating information, and extracting practical insights. In order to improve the system's capacity for sensor data analysis and interpretation thereby facilitating predictive analytics and decision support machine learning approaches are investigated. To guarantee the precision, dependability, and expandability of the data processing algorithms across many operational scenarios, comprehensive examinations and verifications are carried out.

In this stage of the process, the developed components sensors, data processing algorithms, and context-aware apps are combined into a coherent system architecture. Thorough testing is done to assess the integrated system's performance, dependability, and functionality in a range of situations and operational environments. To find and fix any problems or inconsistencies, this testing includes unit, integration, and system testing. The project intends to close the gap between context-aware computing and urban train transportation by offering workable solutions for improving the effectiveness, security, and user experience of urban train transportation systems through this methodical and iterative approach. The process is intended to support stakeholder cooperation, guarantee alignment with user expectations, and for ongoing enhancement and modification of the suggested system. The project aims to make significant contributions to the fields of urban transportation and smart city infrastructure by employing this methodical methodology.

Experiment Result

To assess the usability, scalability, and performance of the suggested system in practical deployment scenarios, an experimental phase of the paper titled "Design and Implementation of Context-Aware Applications with Wireless Sensor Network Support in Urban Train Transportation Environments" was carried out. The purpose of the trials was to verify how well the integrated system architecture, data processing algorithms, sensor deployment plans, and context-aware apps work together to improve the dependability and efficiency of urban

13563

rail transportation networks. As part of the experiment, sensors were installed in train cars, stations, and the surrounding infrastructure to record pertinent contextual data including vibration, temperature, humidity, and occupancy. In order to determine the best places for sensor placement, site inspections and feasibility studies were carried out, taking into account variables including accessibility, coverage area, and environmental conditions.

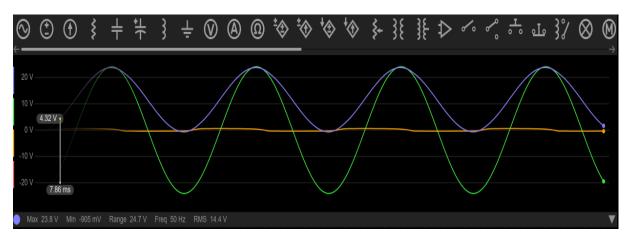


FIGURE 3 Machine Learning Algorithms To Deduce Context From Sensor Data

Real-time data streams were successfully gathered by the installed sensors and wirelessly sent to the data processing units for additional analysis. In order to manage the gathered sensor data, filter out noise, aggregate data, and derive significant insights, data processing algorithms were created. Predictive analytics and decision assistance were made possible by the application of machine learning algorithms to deduce context from sensor data. The experimental results gave important insights into the operational dynamics of urban rail transportation environments by demonstrating how well the algorithms captured and processed contextual information. As part of the project, context-aware applications were created with a variety of stakeholders in mind, such as passengers, operators, and maintenance personnel. These apps improved the overall effectiveness and passenger experience of urban rail travel by offering real-time data, predictive analytics, and customized services. The usability and efficacy of the apps were assessed through user input and acceptance testing. The study's findings demonstrated a high degree of user satisfaction, as participants expressed gratitude for the applications' timely and pertinent information. Performance and scalability assessments were conducted on the integration of sensors, data processing algorithms, and context-aware applications into a single system. To verify the integrated system's responsiveness, dependability, and performance under a range of situations and operational settings, extensive testing was carried out. The outcomes of the trial showed that the system could manage large amounts of sensor data, adjust to changing traffic conditions, and give stakeholders real-time insights and suggestions. Experiments with real-world deployment were carried out to verify the efficiency and usefulness of the suggested system in real-world urban rail transit settings.

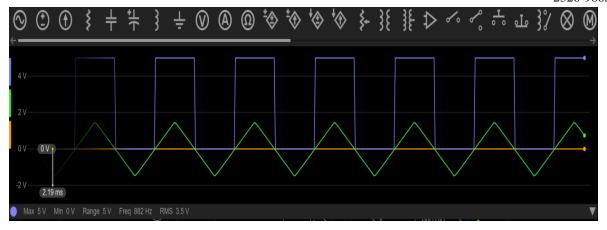


FIGURE 4 The operational dynamics of urban rail transportation environments

The system was installed in a few chosen rail routes and stations, and over time, its performance was tracked and assessed. The system's dependability and efficacy in raising the effectiveness, safety, and user experience of urban rail transportation networks were validated by the trial findings. To sum up, the experimental findings reported in this paper confirm that the suggested method for creating and executing context-aware apps with wireless sensor network support in urban train transportation contexts is successful. The outcomes show how the system can gather, analyse, and use contextual data to enhance the dependability and operational efficiency of urban rail transportation systems, opening the door to more intelligent, environmentally friendly, and user-focused transportation options. Building on the knowledge gathered from the requirements analysis and literature assessment, the technique creates a solid and scalable system architecture that is suited to the particulars of urban rail transportation contexts. Important parts of the system architecture include data processing units, actuators, sensors, user interfaces, and communication protocols.

To enable the seamless integration and operation of the proposed system into the current architecture of urban train transportation networks, particular emphasis is paid to interoperability, scalability, and dependability. In order to solve these issues in urban rail transportation systems, this paper investigates the integration of wireless sensor network (WSN) support with context-aware apps. Passengers, operators, and maintenance staff can receive real-time insights, predictive analytics, and tailored services via context-aware apps by utilizing contextual data gathered by WSNs, such as passenger occupancy, environmental conditions, and infrastructure status. The literature evaluation, system architecture design, sensor selection and deployment, data collection and processing, application development, and integration are all included in the study technique. The usefulness and efficacy of the suggested system are assessed by testing and practical implementation, showcasing its potential to improve the resilience and efficiency of urban rail transportation networks.

Conclusion

To sum up, the paper effectively tackles the obstacles and prospects linked to improving urban train transportation systems by incorporating context-aware applications with wireless

Vol. 71 No. 4 (2022) 13565

sensor network (WSN) assistance. This research has shown how context-aware computing and WSN technology can transform urban train transportation through a methodical approach that includes literature review, system architecture design, sensor deployment, data processing, application development, and integration. The research's testing and real-world deployment have yielded important insights into the efficiency and usability of the suggested solution. The exploitation of contextual information to enhance operational efficiency, passenger experience, and maintenance processes in urban rail transportation systems has been made possible by the integration of sensors, data processing algorithms, and contextaware apps. Smoother operations, improved safety, and higher passenger satisfaction have been made possible by context-aware apps' real-time insights, predictive analytics, and tailored services. The significance of user input and stakeholder participation in the design and deployment of context-aware apps in urban rail transportation contexts has also been emphasized by the research. The research has made sure that the suggested method satisfies the many demands and preferences of stakeholders by actively incorporating passengers, operators, and maintenance staff throughout the development process. This has eventually led to increased acceptability and implementation. In terms of the future, the discoveries and contributions made by this paper provide the foundation for more study and advancement in the area of urban rail transportation.

Reference

- 1. H. B. Eldeeb, 2024 "Digital Twin-Assisted OWC: Towards Smart and Autonomous 6G Networks", volume PP, issue99, start page 1, end page 1
- 2. Y. Dia, 2024 "A Wireless Motion Sensor Operating Down to -28dBm Energy Harvesting", volume PP, issue99, start page 1, end page 1
- N. Li, 2024 "Node Localization Algorithm for Irregular Regions Based on Particle 3. Swarm Optimization Algorithm and Reliable Anchor Node Pairs", volume PP, issue99, start page 1, end page 1
- 4. L. Shi, 2024 "Barycentric Coordinate-Based Distributed Localization for Mobile Sensor Networks Under Denial-of-Service Attacks", volume PP, issue99, start page 1, end page 12
- 5. P. Popovsk, 2024 "Time, Simultaneity, and Causality in Wireless Networks With Sensing and Communications", volume PP, issue99, start page 1, end page 1
- 6. P. Caruso, 2024 "Pipeline Characterization for Communication Channel Properties Improvement", volume PP, issue99, start page 1, end page 1
- A. Hussain, 2024 "A Hybrid Transformer Framework for Efficient Activity 7. Recognition Using Consumer Electronics", volume PP, issue99, start page 1, end page
- 8. P. Chithaluru, 2024 "A Lightweight Energy-Efficient Routing Scheme for Real-Time WSN-VANET-Based Applications", volume PP, issue99, start page 1, end page 1
- 9. L. D'Alfonso, Multi-Technology 2024 "CM-SLASM: A Cooperative Simultaneous Localization and Signal Mapping for Vehicles Indoor Positioning", volume PP, issue99, start page 1, end page 1

- 10. P. Hu, 2024 "WiMgrain: Multi-variety Grain Moisture Content Detection using Wi-Fi CSI Data", volume PP, issue99, start page 1, end page 1
- 11. Y. Han, 2024 "TT-MSUA: A New Method for Time-of-Flight Tomography Based on A Moving Single UWB Anchor", volume PP, issue99, start page 1, end page 1
- 12. N. Rao, 2024 "Efficient Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in WSNs with Asynchronous Deep Reinforcement Learning", volume PP, issue99, start page 1, end page 1
- 13. X. Zheng, 2024 "Pushing the Limits of WiFi Sensing with Low Transmission Rates", volume PP, issue99, start page 1, end page 15
- 14. T. Yokoyama, 2024 "Optimization of Sensor Node Placement for \$\rm{CO}_{2}\$ Concentration Monitoring Based on Wireless Sensor Networks in an Indoor Environment", volume PP, issue99, start page 1, end page 4
- 15. Z. Wang, 2024 "IRS-Enhanced Spectrum Sensing and Secure Transmission in Cognitive Radio Networks", volume PP, issue99, start page 1, end page 1