0-Conditions in the Lattice of Convex Sublattices

Dr.A.Vethamanickam¹ Mrs .S.Christia Soniya^{2*}

¹.Former Associate Professor, Department of Mathematics,

Rani Anna government college for women. Tirunelveli.India.

^{2*}.Research scholar (Reg. No19221172092002.),

Rani Anna government college for women. Tirunelveli. India

Assistant Professor, Einstein College of Arts and Science, Tirunelveli.

(Affiliated to Manonmaniam Sundaranar University)

Article Info

Page Number: 13499 - 13511

Publication Issue: Vol 71 No. 4 (2022) Abstract.

In this paper, it is proved that if the lattice of all convex sublattices of a given lattice L is respectively 0-modular,0-distributive,0-supermodular,0-semi modular, super-0-distributive, pseudo-0-distributive, Eulerian, General disjointness condition, then L is also 0-modular,0-distributive,0-supermodular,0-semi modular, super-0-distributive, pseudo-0-distributive, Eulerian and satisfies General disjointness condition, then L also posses

the same property.

Article History

Article Received: May05, 2022

Revised: June12,2022 Accepted: July20,2022 **Keywords**: Lattice, Convex sublattice, New partial order, Ideal, Filter.

Mathematics subject classification(2020):06B10,06B20,06C05,06C10.

Introduction

Let L be a lattice and CS(L) be the set of all non empty convex sublattices of L. The lattice of all convex sublattices of `a lattice including empty set under set inclusion relation was first studied thoroughly by K.M.Koh in 1972 [5]. There he investigated the interdependence of the lattices L and $(CS(L) \cup \{\varphi\}), \subseteq)$, from the lattice theoretical point of view.

In 1996, S.Lavanya and S.Parameshwara Bhatta [7] introduced another partial ordering on CS(L). They have proved that both L and CS(L) with respect to that ordering are in the same equational class. As a further study P.V. Ramana murty in 2002[9], had investigated the effect of that ordering on lattices which cannot be described by means of identities. Particularly he had looked into semi modular lattices. He obtained that for a lattice L, CS(L) is semi modular if both I(L) and D(L) are semi modular. And if L is of finite length, he proved that the converse also holds. Recently R. Subbarayan [10] has proved that CS(L) is 0-semi modular

then L is 0-semi modular. This has motivated us to look into lattices which satisfy other 0-conditios. In this paper, we consider the lattices which are (i) 0-modular (ii) 0-distributive (iii) 0-super modular (iv) Super-0-distributive (v) Pseudo-0-distributive and(vi) Eulerian lattice and (vii) lattices satisfying the General disjointness condition.

Among these the converse is also proved to be true for the properties 0-distributivity and 0-semimodular. For other properties, we are able to prove only one way namely, CS(L) satisfies the condition, then L also satisfies the condition. These results are analogous to corollary 8, page number 53[9].

2.Preliminaries

In this section, we give some basic definitions needed for the development of the paper.

2.1 Convex sublattice

A sublattice K of a lattice L is called convex iff whenever $a,b\in K$, $c\in L$ and $a\leq c\leq b$ then $c\in K$.

For example, if $a,b \in L$, $a \le b$, the interval $[a,b] = \{x/a \le x \le b\}$ is an example of a convex sublattices of L. The collection of all convex sublattices of a lattice L is denoted by CS(L).

2.2 A new partial ordering on CS(L)

We define a binary relation \leq on CS(L) by the following rule: for $A, B \in CS(L), A \leq B$ if and only if ``for every $a \in A$ there exists a $b \in B$ such that $a \leq b$ and for every $b \in B$ there exists an $a \in A$ such that $b \geq a$ ", clearly ' \leq ' is a partial order on CS(L). Moreover $\langle CS(L), \leq \rangle$ forms a lattice (see[7]).

A simple structure of a 0-modular lattice L which is not modular and its CS(L) are given in the following figure.

2.3 Ideal and Filter

A sublattice *I* of *L* is an ideal iff $i \in I$ and $a \in L$ imply that $a \land i \in I$.

A sublattice F of L is a Filter iff $f \in F$ and $a \in L$ imply that $a \lor f \in F$.

2.4 Remark

Let I(L) denote the lattice of all ideals of L (ordered by \subseteq)

and D(L) denote the lattice of all Filters of L (ordered by \supseteq)

Since L can be embedded in I(L) and I(L) is a sublattice of CS(L), the mapping $f:L\to CS(L)$ defined by f(a)=(a] for every $a\in L$ is an embedding.

2.5 Notations

Let L be a lattice. For a subset A of L we denote (A], [A) and $\langle A \rangle$ respectively to represent the ideal, the filter and the convex sublattice of L generated by A.

2.6 Supermodular lattice

A lattice L is said to be supermodular if it satisfies the following identity

$$(a \lor b) \land (a \lor c) \land (a \lor d) = a \lor [b \land c \land (a \lor d)] \lor [c \land d \land (a \lor b)] \lor [b \land d \land (a \lor c)] \text{ for all } a, b, c, d \in L.$$

2.7 0-Supermodular lattice

A Lattice L is called 0-Supermodular, if whenever $b, c, d \in L$ satisfy

$$b \wedge c = c \wedge d = b \wedge d = 0$$
, then $(a \vee b) \wedge (a \vee c) \wedge (a \vee d) = a$ for every $a \in L$.

2.8 0-modular lattice

A lattice L is said to be a 0-modular lattice if whenever $x \le y$ and $y \land z = 0$,

Then
$$x = (x \lor z) \land y$$
 for all $x, y, z \in L$.

Example M_3 is 0-modular.

2.9 0-Semimodular lattice

A lattice L is said to be a 0-semimodular lattice if whenever a is an atom of L and $x \in L$ such that $a \land x = 0$, then $x \lor a$ covers x.

2.10 0-distributive lattice

A lattice L with 0 is said to be 0-distributive if for all $x, y, z \in L$, whenever $x \wedge y = 0$ and $x \wedge z = 0$, then $x \wedge (y \vee z) = 0$.

2.11 Pseudo-0-distributive

A lattice L is said to be pseudo-0-distributive if for all $a,b,c \in L$, $a \land b = 0$ and $a \land c = 0$ imply that $(a \lor b) \land c = b \land c$.

2.12 Super-0-distributive

A lattice L is said to be super-0-distributive if for all $a,b,c \in L$, $a \land b = 0$ implies that

$$(a \lor b) \land c = (a \land c) \lor (b \land c).$$

2.13 Graded poset

A Poset P is graded if all maximal chains in P have the same length.

2.14 Eulerian Poset

A finite graded poset P is said to be Eulerian if its mobius function assumes the value $\mu(x,y) = (-1)^{l(x,y)}$ for all $x \le y$ in P, where l(x,y) = r(y) - r(x) and r is the rank function on P.

Vol. 71 No. 4 (2022) http://philstat.org.ph

3. On the preservability of 0-conditions in CS(L)

In this section we prove the following theorems.

3.1 Theorem

If CS(L) is 0-Supermodular, then L is 0-Supermodular.

Proof

Let CS(L) is 0-Supermodular

Let $b, c, d \in L$ such that $b \wedge c = c \wedge d = b \wedge d = 0 - - \rightarrow (1)$

we have to prove that $(a \lor b) \land (a \lor c) \land (a \lor d) = a$ for every $a \in L$.

From (1) In CS(L), we have $(b \land c] = \{0\}, (c \land d] = \{0\}, (b \land d] = \{0\}$.

that is, $(b] \land (c] = \{0\}, (c] \land (d] = \{0\}, (b] \land (d] = \{0\}.$

Now $a \in CS(L)$

Therefore, in CS(L), $((a]\lor(b])\land((a]\lor(c])\land((a]\lor(d])=(a]$ as CS(L) is 0-supermodular.

which implies $(a \lor b] \land (a \lor c] \land (a \lor d] = (a]$.

which implies that $((a \lor b) \land (a \lor c) \land (a \lor d)] = (a]$.

Therefore $,(a \lor b) \land (a \lor c) \land (a \lor d) = a$.

Hence, L is 0-Supermodular.

3.2 Theorem

CS(L) is 0-semimodular, if and only if L is 0-semimodular.

Proof

The proof of the part "If CS(L) is 0-semimodular then L is also 0-semimodular" can be found in [10].

Conversely,

Suppose that L is 0-semimodular

we claim that CS(L) is 0-semimodular

Take an atom $\{0,a\}$ in CS(L), where a is an atom in L.

let X be any element in CS(L) such that $\{0, a\} \land X = \{0\}$

That is
$$\langle \{0\} \cup \{a \land x / x \in X\} \rangle = \{0\}$$

which implies that $a \land x = 0$ for every $x \in X$.

which implies that $a \lor x \succ x$ for every $x \in X$ (Since L is 0-semimodular)----(1)

To prove that $\{0, a\} \lor X \succ X \text{ in } CS(L)$

we have
$$\{0, a\} \lor X = \langle X \cup \{a \lor x / x \in X\} \rangle - \cdots \rightarrow (*)$$

suppose there exists a $Y \in CS(L)$ such that $\langle X \cup \{a \lor x / x \in X\} \rangle > Y > X$

Therefore, for every $y \in Y$, there exists $at \in \langle X \cup \{a \lor x / x \in X\} \rangle$ such that $y \le t - - - \rightarrow (2)$

And for every $s \in \langle X \cup \{a \lor x / x \in X\} \rangle$, there exists a $y_1 \in Y$ such that $s \ge y_1 - \cdots \to (3)$

Also there exists a $x_1 \in X$ such that $y_1 \ge x_1 - \cdots \to (4)$

by (1), $a \lor x \succ x$ for every $x \in X$.

By (3), if s is of the form $x \in X$, then $x \ge y_1 \ge x_1$ implies $y_1 \in X$ (Since X is convex)

Now
$$\{0, a\} \lor X = \begin{cases} t \in L / s_1 \lor x_1 \le t \le s_2 \lor x_2 \\ where s_1, s_2 \in \{0, a\} \ and \ x_1, x_2 \in X \end{cases}$$

$$Then \{0,a\} \lor X = \begin{cases} t \in L/x_1 \le t \le x_2 \text{ or } \\ a \lor x_3 \le t \le a \lor x_4 \text{ or } \\ x_1 \le t \le a \lor x_2 \text{ or } \\ a \lor x_1 \le t \le x_2 \\ where s_1, s_2 \in \{0,a\} \text{ and } x_1, x_2 \in X \end{cases}$$

Claim: $\{0, a\} \lor X \le Y$

We prove that for every $t \in \{0, a\} \lor X$, there exists a $y \in Y$ such that $t \le y$ and

for every $y_{11} \in Y$, there exists $t_{11} \in \langle X \cup \{a \lor x / x \in X\} \rangle$ such that $t_{11} \le y_{11}$

Consider a $t \in \{0, a\} \vee X$

(i) Now take the case when for some $x_2, x_3 \in X$, $x_2 \le t \le x_3 - \cdots \to (5)$

 $t \ge y_1$ is true as $Y < \{0, a\} \lor X - \cdots \rightarrow (6)$

Now $x_3 \in X$, there exists a $y_3 \in Y$ such that $x_3 \le y_3 - \cdots \to (7)$

Equation (5) and (7) implies $t \le x_3 \le y_3$

Now consider an element $y_{11} \in Y$, there exists a $x_{11} \in X$ such that $y_{11} \ge x_{11} \left(\sin ce Y \ge X \right)$

As x_{11} can be considered as an element of $\{0, a\} \vee X$,

We have arrived at an element x_{11} of $\{0, a\} \vee X$, below y_{11}

Therefore, $\{0, a\} \lor X \le Y$

(ii) Take the case when $a \lor x_3 \le t \le a \lor x_4$ for some $x_3, x_4 \in X$

 $t \ge y_1$ is clear for some $y_1 \in Y$ by (6)

Now $x_4 \in X$ and $X \le Y$ implies that there exists an element $y_4 \in Y$ such that $x_4 \le y_4$.

Therefore, $t \le a \lor x_4 \le a \lor y_4$

Now $a \lor x_4 \succ x_4$ since L is 0-semimodular.

Therefore, $t \le x_4 \le y_4$.

Hence, $\{0, a\} \lor X \le Y$ in this case also.

(iii) Now consider the case when $x_5 \le t \le a \lor x_6$

As in the case (ii), we can argue that $t \le y_6$ for some $y_6 \in Y$

Therefore, in this case also $\{0, a\} \lor X \le Y$

(iv) Finally , when $a \lor x_7 \le t \le x_8$ for some $x_7, x_8 \in X$,

Then as in the first case, we get $\{0, a\} \lor X \le Y$.

Hence, in all the cases we have $\{0, a\} \lor X \le Y$.

So,
$$\{0, a\} \lor X = Y$$
.

Therefore, $\{0, a\} \lor X \succ X$.

Hence, we conclude that CS(L) is 0-semimodular.

3.3 Theorem

If CS(L) is 0-modular, then L is 0-modular.

Proof

Suppose that CS(L) is 0-modular.

we have to prove that L is 0-modular.

that is to prove that for every $x, y, z \in L$ such that $x \le y$ and $y \land z = 0$, we have $(x \lor z) \land y = x$.

Let
$$x, y, z \in L$$
 and $x \le y$ and $y \land z = 0$.

since
$$x \le y$$
 we have $(x] \subseteq (y]$

and
$$y \wedge z = 0$$
 implies that $(y \wedge z] = \{0\}$

Therefore,
$$(y] \land (z] = \{0\}$$
.

If
$$t \in (y] \land (z]$$
, then $t \le y$ and $t \le z$.

Which implies that $t \le y \land z = 0$

As
$$CS(L)$$
 is 0-modular, we have $((x]\vee(z])\wedge(y]=(x]$.

Which implies that
$$(x \lor z] \land (y] = (x]$$
.

Which implies that
$$((x \lor z) \land y] = (x]$$
.

Hence
$$(x \lor z) \land y = x$$
.

Hence, L is 0-modular.

3.4 Theorem

If CS(L) is Eulerian, then L is Eulerian.

Proof

Let CS(L) be Eulerian.

we have to prove that L is Eulerian.

that is to prove that $\mu(x, y) = (-1)^{\{r(y)-r(x)\}}$ for all $x \le y$ in L.

Let $x, y \in L$ and $x \le y$.

Therefore, $(x] \subseteq (y]$ in CS(L).

Now $\mu((x], (y]) = (-1)^{(r(y]-r(x])}$ as CS(L) is Eulerian.

Since it is easily seen that r(y) = r(y) for all $y \in L$.

And $\mu(x], (y] = \mu(x, y)$ for all $x, y \in L$ as $\lceil \{0\}, L \rceil \cong I(L)$.

Hence $\mu(x, y) = (-1)^{r(y)-r(x)}$.

Therefore, L is Eulerian.

The converse is not true for |L| > 1.

For example, The two element chain is Eulerian, but its lattice of convex sublattices is a 3 element chain which is not Eulerian.

3.5 Theorem

CS(L) is 0-distributive if and only if L is 0-distributive.

Proof

Suppose CS(L) is 0-distributive.

we have to prove that L is 0-distributive

Let $x, y, z \in L$ such that $x \wedge y = 0$ and $x \wedge z = 0$.

To prove $x \land (y \lor z) = 0$.

Now $(x \wedge y] = \{0\}$ and $(x \wedge z] = \{0\}$.

which implies $(x] \land (y] = \{0\}$ and $(x] \land (z] = \{0\}$.

Therefore, $(x] \land ((y] \lor (z]) = \{0\}.$

That is, $(x] \land (y \lor z] = \{0\}.$

That is, $(x \land (y \lor z)] = \{0\}.$

Hence, $x \land (y \lor z) = 0$.

Therefore, L is 0-distributive.

Conversely,

Suppose that L is 0-distributive.

then for every $x, y, z \in L$, whenever $x \wedge y = 0$ and $x \wedge z = 0$, then $x \wedge (y \vee z) = 0$.

We claim that CS(L) is 0-distributive

Let $X \wedge Y = \{0\}$, $X \wedge Z = \{0\}$ where $X, Y, Z \in CS(L)$.

To prove that $X \wedge (Y \vee Z) = \{0\}$.

We know that $X \land (Y \lor Z) = \{t \in L \mid x_1 \land s_1 \le t \le x_2 \land s_2\}$ where $x_1, x_2 \in X$ and $s_1, s_2 \in Y \lor Z$

Now $s_1, s_2 \in Y \vee Z$ implies that $y_{11} \vee z_{11} \le s_1 \le y_{21} \vee z_{21}, y_{12} \vee z_{12} \le s_2 \le y_{22} \vee z_{22}$

for some $y_{11}, y_{21}, y_{12}, y_{22} \in Y$ and $z_{11}, z_{21}, z_{12}, z_{22} \in Z$.

Hence, $x_1 \land s_1 \le t \le x_2 \land s_2$ implies $x_1 \land (y_{11} \lor z_{11}) \le t \le x_2 \land (y_{22} \lor z_{22})$

Therefore, $0 \le t \le 0$ (since L is 0-distributive)

as
$$x_1 \wedge y_{11} = 0$$
, $x_1 \wedge z_{11} = 0$, $x_2 \wedge y_{22} = 0$, $x_2 \wedge z_{22} = 0$.

Which implies that t = 0

Therefore, $X \land (Y \lor Z) = \{0\}.$

Hence, CS(L) is 0-distributive.

3.6 Theorem

If CS(L) is super-0-distributive, then L is super -0-distributive

Proof

Suppose that CS(L) is super 0-distributive.

we have to prove that L is super 0-distributive.

Let $x, y, z \in L$ such that $x \wedge y = 0$.

To prove that $(x \lor y) \land z = (x \land z) \lor (y \land z)$ for every $x, y, z \in L$.

Take an element $z \in L$, therefore $(z) \in CS(L)$.

we have $(x \land y] = \{0\}$ So, $(x] \land (y] = \{0\}$.

Therefore, $((x] \lor (y]) \land (z] = ((x] \land (z]) \lor ((y] \land (z])$ as CS(L) is super 0-distributive.

which implies that $((x \lor y) \land z] = (x \land z] \lor (y \land z] = ((x \land z) \lor (y \land z)]$.

which implies $(x \lor y) \land z = (x \land z) \lor (y \land z)$.

Hence, L is super 0-distributive.

3.7 Theorem

If CS(L) is pseudo-0-distributive, then L is pseudo-0-distributive.

Proof

Suppose that CS(L) is pseudo-0-distributive.

we have to prove that L is pseudo-0-distributive.

Let $x, y, z \in L$ such that $x \wedge y = 0$ and $x \wedge z = 0$.

To prove $(x \lor y) \land z = y \land z$.

Therefore, we have $(x \wedge y] = \{0\}$ and $(x \wedge z] = \{0\}$.

Therefore, $(x] \land (y] = \{0\}, (x] \land (z] = \{0\}.$

Therefore, $((x] \lor (y)) \land (z] = (y) \land (z)$ as CS(L) is pseudo-0-distributive

which implies that $(x \lor y] \land (z] = (y] \land (z]$.

which implies that $((x \lor y) \land z] = (y \land z]$.

which implies $(x \lor y) \land z = y \land z$

Hence, L is pseudo 0-distributive.

3.8 Theorem

If CS(L) satisfies general disjointness condition ,then L also satisfies the general disjointness condition.

Proof

Suppose that CS(L) satisfies general disjointness condition.

we have to prove that L satisfies general disjointness condition.

That is, to prove that $x \wedge y = 0$ and $(x \vee y) \wedge z = 0$ implies that $x \wedge (y \vee z) = 0$ for every $x, y, z \in L$.

Let $x, y, z \in L$ such that $x \wedge y = 0$ and $(x \vee y) \wedge z = 0$.

which implies that $(x \wedge y] = \{0\}$ and $((x \vee y) \wedge z] = \{0\}$.

That is, $(x] \land (y] = \{0\}$ and $((x] \lor (y]) \land (z] = \{0\}$.

Therefore, $(x \land ((y) \lor (z))) = \{0\}$ as CS(L) satisfies general disjointness condition.

which implies $(x \land (y \lor z)] = \{0\}.$

which implies $x \land (y \lor z) = 0$.

Therefore, L satisfies the general disjointness condition.

Remark

Proving the converse of theorem 3.1,3.3,3.6,3.7,3.8 remains open.

References

- 1. Arivukkarasu.J and Vethamanickam.A.,On 0-supermodular lattices, Mathematical Sciences International Research Journal, Volume, Vol-3,Issue-2,748-754 (2014).
- 2. Chen, C.C and Koh, K.M., On the lattice of convex sublattices of a finite lattice, Nantha Math.,5, 92-95(1972)
- 3. Gratzer, G., General lattice theory, Birkhauser Verlag, Basel, (1978).
- 4. Iqbalunnisa, W.B. Vasantha Kandasamy, Florentine smarandache, Supermodular lattices, Educational Publisher Inc. Ohio, (2012).
- 5. Koh, K.M., On the lattice of convex sublattices of a lattice, Nantha Math., 6,18-37(1972).
- 6. Koh, K.M., On the complementation of the CS(L) of a lattice L, Tamkang J. Math., 7,145-150(1976).

- 7. Lavanya, S., Parameshwara Bhatta, S., A New approach to the lattice of convex sublattices of a lattice, Algebra Univ,35,63-71(1996).
- 8. Marmazeev, V.I., The lattice of convex sublattices of a lattice (Russian), Ordered sets and lattices,9,50-58,110-111, (1986) Saratov Gos Univ., Saratov.
- 9. Ramana Murty, P.V., On the lattice of convex sublattices of a lattice, Southeast Asian Bulletin of Mathematics 26,51-55 (2003).