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Abstract 

Accelerated life testing is a fundamental practice in reliability engineering, 

allowing the evaluation of component or device performance over extended 

lifetimes impractical to encounter during design. This study delves into the 

application of the transmuted Weibull distribution to model lifetime data, 

showcasing its versatility in real-world scenarios. The evaluation includes 

critical metrics such as Akaike’s information criterion (AIC), Bayesian 

information criterion (BIC), coefficient of determination, and standard error 

for distribution comparison. Utilizing Maximum Likelihood Estimation 

(MLE) for parameter estimation, a simulation study is conducted with 

varying sample sizes, and the R programming language is employed for 

in-depth analysis. Real data analysis involves comparing the Transmuted 

Weibull (twd) model with other models using goodness-of-fit criteria. 

Maximum Likelihood Estimates (MLEs) are obtained, and the likelihood 

ratio test demonstrates the (twd) model's superior alignment with the data. 

The study concludes with the simplicity of producing Quick Fit plots for 

analysis using R software. The presented approach provides a 

comprehensive understanding of reliability characteristics, combining 

theoretical insights with practical applications and numerical analyses 

 

Keywords: - Probability distributions, R code, data modeling, failure times, 

Reliability. 

 

 

1. Introduction 

A key component of reliability engineering is accelerated life testing. In order to evaluate 

the performance of a component or device over lifetimes that would be impractical to 

encounter under design conditions at the time of product introduction, it is a means to 

shorten the time to failure. Identification of stress factors that can be changed in a 

controlled manner during testing to hasten the degradation of component materials is the 

key to this testing. The study of dependability benefits from the modelling of failure times. 

Therefore, probability distributions that link a given value of the examined variable with 

the chance of occurrence must be used in order to statistically model the objects under 



Mathematical Statistician and Engineering Applications 

ISSN:2094-0343 

2326-9865 

162 
 
 Vol. 72 No. 2 (2023) 

http://philstat.org.ph 
 
 

study [1]. 

Exponential, Gamma, Lognormal, and Weibull distributions are those that are most 

frequently employed to represent failure times, according to [2]. Choosing the distribution 

that most closely matches the failure times constitutes the analysis [3].function, and 

average time to failure after specifying the distribution that describes the data [4] Software 

that identifies the distributions that fit the failure times the best is typically used for this 

modelling. In contrast to software that solely supports analytical computations, R [5] 

permits the application of numerical and analytical approaches. Additionally, a few 

techniques can be employed to establish or suggest which model describes the failure time 

data more accurately. Graphs and numeric techniques can be separated out of this group. 

One graphical method is the paper of probability, which linearizes the accumulated density 

function [6]. Additionally, the authors in [15] proposed an exploration of integral 

equations, with a particular focus on Volterra integral equations. The authors in[16] 

proposed an algorithmic application for transforming positive original responses in an 

academic setting. Finally, the authors in [17, 18] used some statistical analysis methods to 

discuss the investigation of the relationship between petroleum prices and the real 

exchange rate in Iraq. Also, they described the studies of Iraq's economy, respectively. In 

this study, we emphasise showing how the transmuted Weibull distribution can be used to 

describe lifetime, using examples from actual data. The transmuted Weibull distribution, 

also known as the three-parameter Weibull distribution, is used to model data sets. The 

Akaike’s information criterion(AIC), the Bayesian information criterion(BIC), the 

coefficient of determination, and the standard error are used to compare the distributions. 

The maximum likelihood method is used to estimate the parameters of the probability 

distributions. 

 

2. Methodology 

The approach to working with the Weibull distribution is presented in this section. When a 

random variable X has the following probability density function (pdf), it is said to have a 

Weibull distribution with parameters 𝜂 > 0 and σ = 1 

𝑔 (𝑥) =  
𝜂

σ
(

𝑥

σ
)𝜂−1𝑒−(

𝑥

σ
)

𝜂

, x >  0.                                                 (1) 

The probability density function (PDF) of the Weibull distribution is depicted in Figure 

1 for different values of the shape parameter (η) while keeping the scale parameter (σ) 

fixed at 1. 
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Figure 1: probability density function (PDF) of the Weibull distribution for different 

values of (η) and (σ) =1. 

 

The cumulative distribution function (cdf) of the Weibull Distribution can be expressed 

as follows. 

𝐺(𝑥) = 1 − 𝑒−(
𝑥

σ
)

𝜂

.                                                              (2) 

The cumulative distribution function (CDF) of the Weibull distribution is illustrated in 

Figure 2 for varying values of the shape parameter (η), with the scale parameter (σ) held 

constant at 1. 

 
Figur 2: cumulative distribution function (CDF) of the Weibull distribution for different 

values of η and σ =1. 

 

The reliability is the complement of the Cumulative Distribution Function (CDF), 

representing the probability that failure will not happen until time (t), as given by [7,14]. 

Reliability of the Weibull distribution is illustrated in Figure 3 for varying values of the 
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shape parameter (η), with the scale parameter (σ) held constant at 1. 

 
Figur 3: Relability of the Weibull distribution for different values of η and σ =1. 

𝑅(𝑡) = 𝑒− (
𝑡

σ
)

𝜂

,                                                              (3) 

where σ corresponds to the mean time to failure (𝑚𝑡𝑡𝑓) specifically when the slope,𝜂 is 

set to one. The relationship between 𝜂 and mttf is established through a gamma function 

of 𝜂, as demonstrated in the subsequent equation:  

𝑚𝑡𝑡𝑓 = σΓ [1 +
1

𝜂
]                                                              (4) 

 When 𝜂 = 1.0, mttf = σ , the Exponential distribution.  

When 𝜂 > 1.0, mttf is less than σ.  

When 𝜂 < 1.0, mttf is greater than σ.  

When 𝜂 = 
1

2
 , mttf= 2σ .  

It is essential to differentiate between 𝑚𝑡𝑏𝑓 (Mean Time Between Failures) and 𝑚𝑡𝑡𝑓 

(Mean Time To Failure)[8], as they represent distinct concepts. 𝑚𝑡𝑏𝑓 denotes the average 

time interval between occurrences of failures and is computed by dividing the cumulative 

operational time of all units by the total count of observed failures. These two parameters 

possess dissimilar characteristics, although they equate when instances of system 

suspensions are absent. However, under scenarios involving suspensions, substantial 

discrepancies may emerge. mtbf finds relevance primarily in systems that are capable of 

being repaired. Moreover, the Weibull hazard function, denoted as h(t), plays a critical role 

in depicting the instantaneous rate of failures and is mathematically expressed as follows:  

ℎ(𝑡) =  
𝑓(𝑡)

𝑅(𝑡)
=

𝜂

σ
(

𝑥

σ
)𝜂−1𝑒

−(
𝑥
σ

)
𝜂

𝑒−(
𝑥

σ
)

𝜂 , 

undergoes compensation and simplification, resulting in 

ℎ(𝑥) =
𝜂

σ
(

𝑥

σ
)𝜂−1                                                                  (5) 

The Weibull hazard function, of the Weibull distribution is illustrated in Figure 4 for 
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varying values of the shape parameter (η), with the scale parameter (σ) held constant at 1 

 
Figur 4: Weibull hazard function for different values of η and σ =1. 

 

2.2  Weibull Distribution transformation(twd) 

If a random variable X's cumulative distribution function (cdf) is as follows, then it is said 

to have a transmuted distribution. 

𝐹(𝑥)  =  (1 +  𝜆)𝐺(𝑥)  −  𝜆𝐺(𝑥)2, |𝜆|  ≤  1                                   (6) 

we now have the CDF of a transmuted Weibull distribution using (2) and (6). 

𝐹(𝑥) = (1 − 𝑒−(
𝑥

σ
)

𝜂

) (1 + λ𝑒−(
𝑥

σ
)

𝜂

).                                           (7) 

Therefore, the probability density function (pdf) of the transmuted Weibull distribution 

with parameters, η, σ, and λ is 

𝑓(𝑥)  =
𝜂

σ
(

𝑥

σ
)𝜂−1𝑒−(

𝑥

σ
)

𝜂

[(1 − λ + 2λ𝑒−(
𝑥

σ
)

𝜂

].                                   (8) 

A transmuted Weibull distribution's possible pdf shapes are shown in Figure 5 for a 

range of parameter values (λ, η, and σ = 1). Additionally, Figure 6 depicts the cumulative 

distribution function (CDF). 

 
Figure 5: probability density function (PDF) of the transmuted Weibull distribution for 

different values of (η, λ) and (σ) =1. 
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Figure 6: CDF of the transmuted Weibull distribution for different values of (η, λ) and (σ) =1. 

 

The transmuted Weibull distribution, owing to its analytical structure, proves to be a 

valuable tool for modeling the failure time of a system. The reliability function R(t) = 1 − 

F(t) signifies the probability that an item will not fail before time t. An illustration of the 

reliability function for the transmuted Weibull distribution can be found in Aryal [9]. This 

distribution serves as an extended model capable of analyzing complex data across a wide 

range of scenarios, offering a generalization of several commonly used distributions. 

Notably, setting 𝜂 = 1 results in the transmuted exponential distribution, as discussed by 

Shaw et al. [10]. The standard Weibull distribution is a distinctive case with 𝜆 = 0. When 

both 𝜂 and 𝜆 are set to 1, the distribution transforms into an exponential distribution 

characterized by the parameter 𝜎2. Figure 7 visually illustrates various potential shapes of 

the Reliability Function of transmuted Weibull distribution. These shapes correspond to 

selected values of the parameters 𝜆 and 𝜂 , with 𝜎 = 1 held constant.  

𝑅(𝑡) = 𝑒−(
𝑡

𝜎
)

𝜂

[1 − 𝜆 + 𝜆𝑒−(
𝑡

𝜎
)

𝜂

].                                          (9)  

 The other characteristic of interest of a random variable is the hazard rate function defined 

by  

 ℎ(𝑥) =
𝑓(𝑥)

1−𝐹(𝑥)
,                                                               (10) 

which is a significant amount that describes phenomena in life. Given that it has endured 

till time t, it might be informally understood as the conditional likelihood of failure. Given 

below (11) is the hazard rate function for a Weibull random variable that has been 

transformed in figure 8.  

 ℎ(𝑥) =
𝜂

𝜎
{

1−𝜆+2𝜆𝑒
−(

𝑥
𝜎

)𝜂

1−𝜆+𝜆𝑒
−(

𝑥
𝜎

)𝜂 } (
𝑥

𝜎
)

𝑛−1

                                              (11) 

 The cumulative hazard rate function (𝐻(𝑥)) of a transmuted Weibull random variable 

is provided in Aryal’s work [9]. In Figure 7, the reliability characteristics of a transmuted 
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Weibull distribution are visualized while varying the parameter 𝜆 across the range from -1 

to 1. It’s important to observe that the left part of the figure displays this behavior. 

Furthermore, Figure 8 depicts the hazard rate function’s behavior for a transmuted Weibull 

distribution.  

 
Figure 7: Reliability Function of transmuted Weibull distribution different values of (η, λ) 

and (σ) =1. 

 
Figure 8: hazard rate Function of transmuted Weibull distribution different values of (η, λ) 

and (σ) =1. 

𝐻(𝑥) = ∫
𝑥

0
ℎ(𝑥)𝑑𝑥 = (

𝑥

𝜎
)

𝑛

− ln [1 − 𝜆 + 𝜆 exp (− (
𝑥

𝜎
)

𝜂

)].                  (12) 

The mean residual life MRL at a given time x measures the expected remaining life time 

of an individual of age x. It is given by[10]  

𝑚(𝑥) = 𝐸(𝑋 − 𝑥|𝑋 ≥ 𝑥)     

      =
1

𝑅(𝑥)
∫

∞

0
𝑅(𝑢)𝑑𝑢.                                                    (13) 

It’s noteworthy that 𝑚(0) represents the mean time to failure. The Mean Residual Life 
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(MRL) can be expressed in terms of the cumulative hazard rate function as demonstrated 

by the integral equation:  

 𝑚(𝑥) = ∫
∞

0
𝑒𝑥𝑝[𝐻(𝑋) − 𝐻(𝑥 + 𝑡)] 𝑑𝑡. 

Additionally, the mean residual life can be connected to the failure rate hazard function 

of the random variable through the relationship �́�(𝑥) = 𝑚(𝑥)ℎ(𝑥) − 1. 

For a transmuted Weibull random variable, the MRL function 𝑚(𝑥) can be represented 

using the incomplete Gamma function, as outlined in Equation (14) below:  

𝑚(𝑥) =
𝜎

𝜂

exp((
𝑥

𝜎
)𝜂)

[1−𝜆+𝜆exp (−(
𝑥

𝜎
)𝜂)]

(1 − 𝜆)Γ (
1

𝜂
, [

𝑥

𝜎
]

𝜂

) + 𝜆2
1

𝜂Γ ((1 − 𝜆)Γ (
1

𝜂
, [

𝑥

𝜎
]

𝜂

)) .     (14) 

 Here Γ(𝑎, 𝑥) = ∫
∞

𝑥
𝑒−1𝑧𝑎−1 𝑑𝑧 represents the upper incomplete Gamma function. 

3. Maximum Likelihood Estimators of (twd) 

Take into account a set of random samples, denoted as 𝑥1, 𝑥2, … , 𝑥𝑛, which comprises n 

observations originating from the transmuted Weibull distribution (twd), ( 𝜂 , 𝜎 , 𝜆 ), 

characterized by its probability density function as cited in Ahmad’s work [11,13]. The 

likelihood function corresponding to Equation (15) is expressed as follows:  

𝐿 = (
𝜂

𝜎
)

𝑛

𝑒
[− ∑𝑛

𝑖=1 (
𝑥𝑖
𝜎

)
𝜂

]
∏𝑛

𝑖=1 {(
𝑥𝑖

𝜎
)

𝑛−1

× [1 − 𝜆 + 2𝜆exp(−
𝑥𝑖
𝜎

)𝜂

]}.             (15) 

Hence, the log-likelihood function 𝑙 = 𝑙𝑛𝐿 become  

𝑙 = 𝑛ln
𝜂

𝜎
− ∑

𝑛

𝑖=1

(
𝑥𝑖

𝜎
)

𝜂

+ ∑

𝑛

𝑖=1

ln (
𝑥𝑖

𝜎
)

𝜂−1

+ ∑

𝑛

𝑖=1

ln [1 − 𝜆 + 2𝜆exp(−
𝑥𝑖
𝜎

)𝜂

] 

l = 𝑛ln𝜂 − 𝑛𝜂ln𝜎 + (𝜂 − 1) ∑𝑛
𝑖=1 ln(𝑥𝑖) − ∑𝑛

𝑖=1 ln (
𝑥𝑖

𝜎
)

𝜂−1

+ ∑𝑛
𝑖=1 ln [1 − 𝜆 +

2𝜆exp(−
𝑥𝑖
𝜎

)𝜂

].                                                                        (16) 

Hence, the Maximum Likelihood Estimates (MLEs) for 𝜂, 𝜎, and 𝜆, which aim to 

optimize Equation (16), must adhere to the subsequent set of normal equations.  

𝜕𝑙

𝜕𝜂
=

𝑛

𝜂
+ ∑𝑛

𝑖=1 [1 − (
𝑥𝑖

𝜎
)

𝜂

] ln (
𝑥𝑖

𝜎
) − 2𝜆 ∑𝑛

𝑖=1

ln (
𝑥𝑖
𝜎

)(
𝑥𝑖
𝜎

)𝜂𝑒−(
𝑥𝑖
𝜎

)𝜂

1−𝜆+2𝜆𝑒−(
𝑥𝑖
𝜎

)𝜂
= 0,            (17) 

𝜕𝑙

𝜕𝜎
=

𝑛

𝜂
+ ∑𝑛

𝑖=1 [1 − (
𝑥𝑖

𝜎
)

𝜂

] −
2𝜆𝜂

𝜎
∑𝑛

𝑖=1

(
𝑥𝑖
𝜎

)𝜂𝑒−(
𝑥𝑖
𝜎

)𝜂

1−𝜆+2𝜆𝑒−(
𝑥𝑖
𝜎

)𝜂
= 0,                     (18) 

𝜕𝑙

𝜕𝜆
= ∑𝑛

𝑖=1

2𝑒−(
𝑥𝑖
𝜎

)𝜂−1

1−𝜆+2𝜆𝑒−(
𝑥𝑖
𝜎

)𝜂
= 0.                (19) 

The (MLE) estimate, denoted as 𝜃 = (�̂�, �̂�, �̂�), for the parameter set 𝜃 = (𝜂, 𝜎, 𝜆), is 

acquired through the resolution of this non-linear system of equations, as detailed in 

Zaindin’s work [11].  

 

4. Application  

4.1. Simulation study 

as a method, involves the representation or emulation of real-world phenomena using 
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specific models. Given the intricacies of complex operations encountered in reality, which 

may be challenging to comprehend and analyze directly, models resembling real-world 

scenarios become invaluable. Simulation serves as a tool to enhance understanding and 

analysis by providing insights into the underlying processes or real-world situations. 

In this section, we present a simulation study wherein data is generated using the inverse 

transformation method of the cumulative distribution function. The primary objective is to 

assess the performance of estimators, specifically Maximum Likelihood Estimators 

(MLEs). The evaluation is based on the comparison of their estimates and Mean Squared 

Errors (MSEs). The simulation tests are carried out with varying sample sizes (n = 25, 

50,100, 150) for both the Weibull distribution and its transformation. The implementation 

utilizes the R programming language, adjusting values for the two parameters (η, σ) and (η, 

σ , 𝜆). The experiment is iterated 1000 times for each combination of sample size and shape 

parameter values. Tables (1), (2), and (3) present the estimated parameters and MSEs for 

the estimations of (η, σ) in three distinct cases. Case (1) is outlined in Table (1), Case (2) in 

Table (2), and Case (3) in Table (3). 

 

Table 1: MSE of the parameter estimations and a comparison of the two methods of 

estimation at the sample sizes (25,50,100,150) For the initial value set (𝜂=1.4, σ =1,𝜆= 1). 

method

s 

 

S. 

Size 

p Estimate 

MSE 
p value MSE AIC BIC 

wd 

25 

 

𝜂 1.17624 0.050067 
37.1835 39.6213 0.8243463 

σ 0.77094 0.05246599 

twd 

𝜂 1.216697 0.033600034 

-27.1590 -23.5024 0.8079190 σ 0.8438874 0.02437114 

𝜆 0.1837507 0.1000136 

wd 

50 

 

𝜂 1.392868 5.085831e-05 
80.79324 84.61728 0.7721594 

σ 0.9338179 0.004380075 

twd 

𝜂 1.345351 0.002986467 

-70.7308 -64.9947 0.7668581 σ 0.8755625 0.01548470 

𝜆 -0.154844 0.4288210 

wd 

100 

 

𝜂 1.428079 0.0007884332 
-155.737 -147.922 0.770635 

σ 0.9994493 3.033195e-07 

twd 

𝜂 1.493404 0.008724310 

166.5986 171.809 0.76131055 σ 1.4929016 0.24295198 

𝜆 0.8856499 0.1487259 

wd 
150 

𝜂 1.417022 0.0002897649 
244.5604 250.5817 0.773764 

σ 0.9813339 0.0003484228 

twd 𝜂 1.349451 0.002555234 -234.443 -225.411 0.7550213 
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σ 0.8987777 0.01024596 

𝜆 -0.208523 0.5020060 

 

Table 2: MSE of the parameter estimations and a comparison of the two methods of 

estimation at the sample sizes (25,50,100,150) For the initial value set (𝜂=0.7, σ =1,𝜆= 1). 

method

s 

 

S. 

Size 

p Estimate 

MSE 
p value MSE AIC BIC 

wd 

25 

 

𝜂 0.7417809 0.00174564 
56.86037 59.29812 9.343934 

σ 0.9683636 0.001000863 

twd 

𝜂 0.6083443 0.0084007664 

-20.3684 -24.7117 4.232673 σ 0.7120392 0.0829214265 

𝜆 0.1836635 0.6664052 

wd 

50 

 

𝜂 0.6964223 1.279985e-05 
100.5557 104.3798 6.985404 

σ 0.872006 0.01638245 

twd 

𝜂 0.6726759 0.0007466078 

-90.4933 -84.7572 6.674713 σ 0.7666121 0.0544698910 

𝜆 -0.1548461 1.3336697 

wd 

100 

 

𝜂 0.7140396 0.0001971093 
225.752 230.9624 6.380177 

σ 0.9988995 1.211052e-06 

twd 

𝜂 0.7168592 0.0002842329 

-215.754 -207.939 6.397812 σ 1.0122492 0.0001500432 

𝜆 0.0146814 0.9708526 

wd 

150 

𝜂 0.7020947 4.387814e-06 
352.3819 358.4032 6.27817 

σ 1.057965 0.003359905 

twd 

𝜂 0.6747204 0.0006390567 

-314.963 -305.931 5.331955 σ 0.8077863 0.0369460885 

𝜆 -0.2085476 1.4605874 

 

Table 3: MSE of the parameter estimations and a comparison of the two methods of 

estimation at the sample sizes (25,50,100,150) For the initial value set (𝜂=7, σ =1,𝜆= 1). 

meth

ods 

 

S. 

Size 

p Estimate 

MSE 
p value MSE AIC BIC 

wd 
25 

 

𝜂 5.881204 1.251704 
-13.3299 -10.8921 0.07438244 

σ 0.9493018 0.002570306 

twd 
𝜂 6.083648 0.8397011 23.35441 

 

27.01104 

 

0.07300441 

 σ 0.9666174 0.001114399 
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𝜆 0.1837536 6.662582e-01 

wd 

50 

 

𝜂 7.363925 0.1324413 
-48.0245 -44.2004 0.0662862 
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𝜂 7.044783 0.002005491 
-126.376 -120.355 0.0542712 

σ 1.001298 1.683608e-06 
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𝜂 6.884547 0.01334 

684.60432 693.6362 0.0460602 σ 1.4397453 0.19337 

𝜆 1. 244403 0.05973 

 

The presented tables provide a thorough comparison between the Weibull and 

Transmuted Weibull distributions across different sample sizes. This comparison relies on 

the Mean Squared Error (MSE) of parameter estimates, as well as the Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) values. The results highlight the 

significant impact of both distribution choice and sample size on the accuracy of parameter 

estimates and the overall goodness of fit for the models. Consistently, the Transmuted 

Weibull distribution outperforms the Weibull distribution in terms of parameter estimation 

accuracy and goodness of fit across the examined scenarios. 

 

  4.2. Real data  

In this section, we showcase two instances where the Transmuted Exponential Weibull 

(TEW) model is juxtaposed with other related models. To ensure a balanced comparison, 

we employ various goodness of fit criteria. The R software is used to conduct numerical 

analyses to determine the distribution that best fits each data set. The Maximum Likelihood 

Estimates (MLEs) of the parameters of the distributions are displayed in the subsequent 

tables. The models are selected using the Akaike Information Criterion (AIC), also known 

as the Bayesian Information Criterion (BIC). The data used in this context is purely for 

illustrative purposes. All crucial numerical computations have been executed using the R 

software. Our first dataset pertains to the analysis of gear data, obtained from the smithdat 

folder within the SuperSMITH installation, as shown in Table (4). These data points, 

representing subjects, have been fitted using the Weibull distribution, and the estimated 

parameters are outlined in the table below. It’s noteworthy that the subject data have been 
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modeled using both the Weibull and the transmuted Weibull distributions. Table (5) 

provides the MLEs and the values of maximal log-likelihoods for the Weibull and 

transmuted Weibull distributions. The likelihood ratio test can be employed to illustrate 

that the transmuted Weibull distribution aligns more closely with the input data than the 

standard 3-parameter Weibull distribution. 

 

Table 4: The gears data obtained from the smithdat folder on SuperSMITH installation. 

4325.816 6089.124 6281.571 7329.370 7586.772 

8361.412 9136.757 9794.200 10939.03 10942.62 

11090.46 11635.25 12160.14 13057.69 14307.81 

    

Table 5: The normality tests of the original and transformed datasets. 

Datas

ets 

Parameter 

MLE 
Std. Dev. 

K-Smirov Statistics 

Stat. p-value AIC BIC W A 

twd 

𝜂 =0.90051

5 
0.0716 

0.0534

2 

0.9377

9 

187.6

1 

195.4

3 

0.0354

6 

0.254

2 

σ= 0.98870 46.23688 

Min(-log(Likelihood)) =90.80609 𝜆 =1.12854

64 

52.77673

2 

wd 

𝜂 = 0.9737

25 
0.138803 

0.1159

6  

0.9227 379.4

7 

381.4

6 

0.0391

4  

3.134 

σ =14167.5  3467.59 Min(-log(Likelihood)) =-211.479 

Where A= Anderson-Darling statistic. 

W= Cramer-von Misses statistic. 

 

Quick Fit functions have fit characteristics included in the function name, and 

reasonable defaults are used, making it straightforward to get a full analysis. Figure 9 

simply demonstrates the simplicity of producing a Quick Fit plot. 
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Figure 9: A Probability Plot with Quick Fit. 

 

Figure 10 shows a multi-distribution and the best distribution is the transformed Weibull 

with a 3-parameter. When comparing the 𝑅2 in the three cases (transformed Weibull with 

3-parameters = 0.9825; transformed Weibull with 2 -parameter= 0.9783 and lognormal 

= 0.9732) it is concluded that the best value is transformed Weibull with 3 parameters. 

 
Figure 10: multi-distribution with transformed Weibull two, three parameters, and 

lognormal. 
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The precursor computation for establishing bounds on the likelihood ratio involves 

creating a likelihood contour at a specified confidence level for a given model. These 

contours represent horizontal sections through the peaked likelihood mound centered 

around the maximum likelihood estimate. The contour slices are generated at ratio values 

determined by the following relationship[12]: 

 ratio test  =  mle −
𝑞𝑐ℎ𝑖𝑠𝑞(𝐶𝐿, 𝑑𝑒𝒇)

2
, 

where mle is the maximum log-likelihood estimate, CL is the confidence limit, and def 

represents the degrees of freedom. The degrees of freedom are set to 1 when comparing the 

model fit itself and 2 when making comparisons against other data. we can show that in 

Figure 11. 

 
Figure 11: Comparison of datasets by likelihood contour based on a submitted data set 

with 3 failure points and approximately 30,000 right-censored suspension, values. 

 

The points on a specific confidence level contour are used to define confidence interval 

bounds. Figure 12 shows how the extreme Beta value points form asymptotes for the bouns 

on a 2-parameter mode. 
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Likelihood Bounds Defined by Contour Points 
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Figure 12: Likelihood ratio bounds formed by confidence level contour. 

 

The Fisher Matrix bounds including uncertainty in the third parameter. The data used 

for Figure 10 have been applied to form these bounds as bold purple lines in figure 13 

 
Figure 13: Unusually formed Fisher Matrix bounds on a 3-parameter model. 
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5. Conclusion 

In this study, both real and simulated datasets were utilized to assess the performance of the 

transmuted Weibull distribution, in comparison to the 2-parameter Weibull distribution. 

The focus was specifically on modeling gear data, with the use of ratios to identify contour 

slices. Evaluation metrics included the standard error, coefficient of determination, and 

both the Bayesian and Akaike information criteria. The transmuted Weibull distribution 

demonstrated enhanced adaptability and a more precise representation of real data. Its 

versatility was underscored through numerical analyses and practical applications, thereby 

highlighting its potential applicability in the realm of reliability engineering. The study 

culminates in a succinct yet comprehensive exploration of the distribution’s effectiveness, 

offering valuable insights for practitioners in the industry. 

 

Availability of Data: The datasets that support the paper’s results are included in the 

paper. 

Funding Statement: No Applicable. 

Conflict of Interest: No conflicts of interest exists among the authors of this paper. 

 

References 

[1]  CRESPO, A.A.  Estatística Fácil.,  17ª Edição. LTC Editora, 2005. 

[2]   HAVIARAS, G.  Metodologia para análise de confiabilidade de pneus radiais em 

frota de caminhões de longa distância. Dissertação (Mestrado em Engenharia 

Automotiva),  Escola Politécnica da Universidade de São Paulo, São Paulo, p.124 2005. 

[3]   WUTTKE, R.A.; SELLITTO, M.A.  Cálculo da disponibilidade e da posição na 

curva da banheira de uma válvula de processo petroquímico.,  Revista Produção On Line, 

Santa Catarina, v. 8, n. 4, dez. 2008. 

[4]   FOGLIATO, F.S.; RIBEIRO, J.L.D.  Confiabilidade e Manutenção Industrial.,  

Elsevier, Rio de Janeiro, 2009. 

[5]   R CORE TEAM. R:  A language and environment for statistical computing.,  R 

Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/. 

2020. 

[6]   FALCETTA, E.F.  Análise da Confiabilidade de Produtos baseada em Dados de 

utilização da Garantia.,  Dissertação (Mestrado profissionalizante em Engenharia), 

Universidade Federal do Rio Grande do Sul, Porto Alegre, 2000. 

[7] Hartzell, A.L., Da Silva, M.G. and Shea, H.R.,. MEMS reliability. Springer Science & 

Business Media. 2010.  

[8]   Espinel-Blanco, E., Flórez-Solano, E. and Arévalo-Rueda, J., July. Study of the 

modified Weibull function to analyze reliability in engineering components that fail and 

are repairable. In Journal of Physics: Conference Series (Vol. 1981, No. 1, p. 012011). 

IOP Publishing. 2021 

[9]   Aryal, G. R., & Tsokos, C. P.  Transmuted Weibull distribution: A generalization of 



Mathematical Statistician and Engineering Applications 

ISSN:2094-0343 

2326-9865 

177 
 
 Vol. 72 No. 2 (2023) 

http://philstat.org.ph 
 
 

theWeibull probability distribution.,  European Journal of Pure and Applied Mathematics, 

4(2), 89-102.2011. 

[10]   Shaw, W.T. and Buckley, I.R.  The alchemy of probability distributions: Beyond 

gram-charlier & cornish-fisher expansions, and skew-normal or kurtotic-normal 

distributions.,  Submitted, Feb, 7, p.64.2007. 

 [11]   Zaindin M.and Ammar M. Sarhan.  Parameters Estimation of the Modified 

Weibull Distribution.,  Applied Mathematical Sciences, 3(11):541–550, 2009. 

[12]   Chen, G., & Balakrishnan, N.  A general purpose approximate goodness-of-fit 

test.,  Journal of Quality Technology, 27(2), 154-16,1995. 

[13]   Ahmad, A., Ain, S.Q. and Tripathi, R.  Transmuted Power Inverse Lindley 

Distribution with Applications in Engineering Science.,  International Journal of Statistics 

and Reliability Engineering, 8(2), pp.203-213,2021. 

[14] Othman, S.A., Qadir, S.T. and Abdulazeez, S.T., 2023. Comparative Analysis of 

Scaling Parameter Estimation for the Lindley Distribution in Wait Time Analysis: 

Simulated and Real Data Applications. Tuijin Jishu/Journal of Propulsion 

Technology, 44(2). 

[15] Hassan, Z.M., Abdulazeez, S.T. and Rasheed, S.K., 2023. Investigating Solutions of 

Volterra Integral Equations Using the Successive Approximations. Mathematical 

Statistician and Engineering Applications, 72(2), pp.75-82. 

[16] Othman, S.A. and Ali, H.T.M., 2021. Improvement of the nonparametric estimation of 

functional stationary time series using yeo-johnson transformation with application to 

temperature curves. Advances in Mathematical Physics, 2021, pp.1-6. 

[17] Masiha, R. Y., Abdulazeez, S. T., & Saeed, D. S. (2021). Investigation of the 

Relationship Between Economic Growth and use of Fossil and Hydroelectric Energy 

Resources by ARDL Boundary Test: 1971-2018 Iraq Case. Jurnal Matematika 

MANTIK, 7(2), 155-164. 

[18] Saeed, D. S., Abdulazeez, S. T., Rasheed, S. K., Masiha, R. Y., & Malo, D. H. (2021). 

The relationship between petroleum price and real exchange rate: an example of 

Iraq. General Letters in Mathematics (GLM), 11(1). 

 


