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Abstract: This paper explores the subject of integral equations with an 

emphasis on Volterra integral equations (VIEs). Through the use of the 

method of successive approximations (MOSA), the main goal of this work 

is to investigate and analyze the solutions to (VIEs). Furthermore, we 

show how to transform a normal differential equation's initial value 

problem into a (VIEs) and a Volterra integral differential equation. We 

seek to provide a greater knowledge of the behavior and solutions of 

(VIEs) by a thorough investigation of the proposed method. 

Keywords: - Differential Equation, Method of Successive 

Approximations, Voltera Integral Equation, Fredholm Integral Equation, 

Initial value problem, Closed form solution. 

1. Introduction

Integral equations are the foundation of mathematical and scientific inquiry. They

permeate a wide range of fields and produce useful discoveries that influence how we 

perceive the natural world. The pervasiveness of integral equations highlights their crucial 

role in explaining complicated phenomena, from the intricate worlds of physics and 

engineering to the intricate interplay of economic systems [1-7]. By describing relationships 

between functions as integrals, these equations go beyond ordinary differential equations and 

provide a potent method for modeling situations where interactions between variables are 

inextricably linked. 

Volterra integral equations (VIEs) stand out as a particularly fascinating subset among the 

various integral equation forms because they may describe the dynamic evolution of systems 

through time [8]. Researchers can capture complex temporal correlations that evade 

traditional differential equations using these equations, which go right to the heart of dynamic 

phenomena. The modeling of complex processes like population dynamics [9], chemical 

reactions [10], and signal processing [11], where the past interactions between entities have a 

significant impact, is where (VIEs) find their strongest application. They are excellent 

instruments for recording the complex behaviors of systems that develop in response to a 

history of impacts because of their adaptability in tolerating memory effects and previous 

interactions. 
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The purpose of this work is to investigate the solutions of (VIEs) using the method of 

successive approximations, as well as to demonstrate the process of converting a normal 

differential equation to a Volterra integral equation. 

2. Integral equations

Integral equations are a branch of mathematics that deals with equations involving

unknown functions within integrals. Unlike ordinary differential equations (ODEs) that 

involve derivatives of unknown functions, integral equations involve integrals of unknown 

functions. They have applications in various fields such as physics, engineering, economics, 

and biology, where the problem can be naturally described in terms of a relationship between 

a function and an integral of that function. 

2.1. Definition 

Integral equation is an equation that shows the function of an unknown 𝑢(𝜏)under the 

integral logo. A typical form of integral equation in the 𝑢(𝜏)  is the model 

 𝑢(𝜏) = 𝑓(𝜏) + ∫ 𝑊(𝜏, 𝑡)𝑢(𝑡)𝑑𝑡,
𝛽( 𝜏)

𝛼( 𝜏)
  (1) 

where 𝑊(𝜏, 𝑡) is called the nucleus of the integral equation, and 𝛼(𝜏) and 𝛽(𝜏) are the limits 

of the integral. In (1), it is easily observed that the unrecognized 𝑢(𝜏) function appears under 

the combined mark as mentioned above, and exits the combined mark in most other cases as 

discussed later. It is important to note that the kernel 𝑊(𝜏, 𝑡) and the function 𝑓(𝜏) in 

equation (1) are predefined. Our goal is to identify 𝑢(𝜏) that satisfies equation (1) and this 

can be achieved using different techniques that will be discussed in our paper.  

Integral equations are classified into two main types: Fredholm equations and Volterra 

equations. The distinction between these types is based on the limits of integration in the 

integral equation. Fredholm equations have fixed limits of integration, while Volterra 

equations have variable limits. 

There are two broad categories of integral equations: 

2.2. Linear Integral Equations: In these equations, the unknown function appears linearly 

within the integral. Linear integral equations are further divided into two types: 

I. Fredholm Integral Equations: These involve the unknown function in the integral equation

itself. They are commonly encountered in problems involving boundary value problems,

scattering phenomena, and eigenvalue problems.

Given the Fredholm most standard form for the model of linear equations

 𝜑(𝜏)𝑢(𝜏) =  𝑓 (𝜏) +  𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢(𝑡)𝑑𝑡,
𝑏

𝑎

  (2) 

when the integral limits a and b are constants, the unknown function 𝑢(𝜏) appears linearly 

under the integration sign. If the function 𝜑(𝜏) = 1, equation (2) simply becomes 

 𝑢(𝜏) = 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢(𝑡)𝑑𝑡,
𝑏

𝑎

 (3)
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and this equation is called FIE of type II; whereas if 𝜑(𝜏) = 0, then (2) yields 

 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢(𝑡)𝑑𝑡 = 0,
𝜏

𝑎

  (4) 

which is called FIE of the first kind [12]. 

II. Volterra Integral Equations (VIEs): These involve the unknown function in the kernel (the

function being integrated) of the integral equation. They often appear in problems related to

population dynamics, chemical reactions, and certain physical processes.

The most standard form of linear VIEs is the model

 𝜑(𝜏)𝑢(𝜏) =  𝑓 (𝜏) +  𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢(𝑡)𝑑𝑡,
𝜏

𝑎

  (5) 

when the integral limits are 𝜏, the unknown function 𝑢(𝜏) appears linearly under the 

integration sign. If the function 𝑢(𝜏) = 1, equation (5) simply becomes 

𝑢(𝜏) =  𝑓 (𝜏) +  𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢(𝑡)𝑑𝑡,
𝜏

𝑎

  (6) 

this is known as the (VIEs) of the second type; whereas if 𝜑(𝜏) = 0, equation (5) becomes 

 𝑓 (𝜏) +  𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢(𝑡)𝑑𝑡 = 0,
𝜏

𝑎

  (7) 

this is known as Volterra's first type equation [13]. 

2.2. Nonlinear Integral Equations: In these equations, the unknown function appears 

nonlinearly within the integral. Solving nonlinear integral equations can be more complex 

and challenging, often requiring numerical methods or approximations. 

It is important to note that integral equations arise in engineering, physics, chemistry, and 

biological problems. Many of the initial value problems and limitations associated with 

normal and partial differential equations can be cast in integral equations of Volterra and 

Fredholm types, respectively. If the unknown function 𝑢(𝜏) that appears under the integration 

sign is listed in the functional model 𝐹(𝑢(𝜏)) as the power of 𝑢(𝜏) is no longer the unit, for 

example F(u(𝜏))=𝑢𝑛(x), n ≠1, or 𝑠𝑖𝑛𝑢(𝜏)etc.,  then the integral equations of Volterra and

Fredholm are classified as integral parts of nonlinear equations [14]. As for the examples, the 

integral of the following equations is an integral part of the non-linear equations: 

𝑢(𝜏) = 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢2(𝑡)𝑑𝑡,
𝜏

𝑎

𝑢(𝜏) = 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡) sin(𝑢(𝑡)) 𝑑𝑡
𝜏

𝑎

, 

𝑢(𝜏) = 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡) In(𝑢(𝑡)) 𝑑𝑡.
𝜏

𝑎

 

Then, if we set 𝑓(𝜏) = 0, the resulting equations is called homogeneous equation 

complementary, otherwise called the integration of heterogeneous equation. 

3. The Method of Successive Approximations

In this section, we describe the Method of Successive Approximations as a potent method for

resolving (VIEs). We outline a step-by-step methodology for this approach and demonstrate

its convergence characteristics. We demonstrate the effectiveness of the Method of
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Successive Approximations in obtaining approximations to the Volterra integral equations 

through examples. 

In this way, the replacement of the function as 𝑢(𝜏) within the merged brand equation 

Volterra (1) is not known as any selective function with a real value of selective 𝑢0(𝜏), called 

zeroth approximation [15]. This replacement will give the first approximation 𝑢1(𝜏) by 

𝑢1(𝜏) = 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢0(𝑡)𝑑𝑡.
𝜏

0

  (8) 

Obviously 𝑢1(𝜏)  is continuous if 𝑓(𝜏), 𝐾(𝜏, 𝑡) and 𝑢0(𝜏)  are continuous. The second 

approximation 𝑢2(𝜏)  can be obtained similarly by replacing 𝑢0(𝜏)  in equation (8) with 

𝑢1(𝜏) obtained above. And we found 

𝑢2(𝜏) = 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢1(𝑡)𝑑𝑡.
𝜏

0

  (9) 

Continuing this way, we can get an infinite sequence of functions 

𝑢0 (𝜏), 𝑢1(𝜏), 𝑢2(𝜏), … , 𝑢𝑛(𝜏), …

the relationship will satisfy repetition 

un(τ) = f(τ) + λ ∫ K(τ, t)un−1(t)dt,
τ

0

  (10) 

for 𝑛 = 1, 2, 3, . .. and 𝑢0(𝜏) the equivalent of any job has its real value specified. More 

commonly selected function for 𝑢0(𝜏) are 0, 1, and 𝜏. Thus, at the limit, the solution 𝑢(𝜏) of 

the equation (8) is obtained as 

𝑢(𝜏) = lim
𝑛→∞

𝑢𝑛(𝜏),  (11) 

so that the resulting solution 𝑢(𝜏) is independent of the selection of zeros rounded 𝑢0(𝜏). 

This process is very simple approximation. However, if we follow the method of successive 

approximation for Picard, we need to setup 𝑢0(𝜏) = 𝑓(𝜏) and specify 𝑢1(𝜏) and the other

rounding as follows [16]: 

𝑢1(𝜏) = 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡)𝑓 (𝑡)𝑑𝑡, 
𝜏

0

𝑢2(𝜏) = 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢1(𝑡)𝑑𝑡,
𝜏

0

⋮ 

𝑢𝑛−1(𝜏) = 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢𝑛−2(𝑡)𝑑𝑡,
𝜏

0

𝑢𝑛(𝜏) = 𝑓(𝜏) + 𝜆 ∫ 𝐾(𝜏, 𝑡)𝑢𝑛−1(𝑡)𝑑𝑡.
𝜏

0

  (12) 

4. Application and Examples

In order to support the ideas covered throughout the study, we provide examples and real-

world applications of Volterra integral equations in this section. 

Example 4.1. Solve the following Volterra integral equation: 

𝑢(𝜏) = 𝜏 + 𝜆 ∫ 𝑥𝑢(𝑡)𝑑𝑡,
𝜏

0
 𝜆 > 0. 

Solution. To solve the given Volterra integral equation using the method of successive 

approximations, we will follow these steps: 

Step 1: Initial Approximation  
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Let's start with the initial approximation: 𝑢0(𝜏) = 𝜏,

Step 2: Successive Approximations  

We will use the formula for successive approximations:  

 𝑢𝑛+1(𝜏) = 𝑥 + 𝜆 ∫ 𝜏𝑢𝑛(𝑡)𝑑𝑡,
𝜏

0
 

Let's calculate the first few successive approximations: 

Initial Approximation: 𝑢0(𝜏) = 𝜏, and 𝜆 = 1

𝑢1(𝜏) = 𝜏 + ∫ 𝜏𝑢0(𝑡)𝑑𝑡
𝜏

𝑎
= 𝜏 + ∫ 𝜏2𝑑𝑡

𝜏

0
= 𝜏 +

𝜏3

3
, 

𝑢2(𝜏) = 𝜏 + ∫ 𝜏𝑢1(𝑡)𝑑𝑡
𝜏

𝑎
= 𝜏 + ∫ (𝜏2 +

𝜏4

3
) 𝑑𝑡

𝜏

0
= 𝜏 +

𝜏3

3
+

𝜏5

15
, 

𝑢3(𝜏) = 𝜏 + ∫ 𝜏𝑢2(𝑡)𝑑𝑡
𝜏

0
= 𝜏 + ∫ (𝜏2 +

𝜏4

3
+

𝜏6

15
) 𝑑𝑡

𝜏

0
= 𝜏 +

𝜏3

3
+

𝜏5

15
+

𝜏7

105
. 

In general, the n-th approximation can be written as: 

𝑢𝑛(𝜏) = 𝜏 + ∑
𝜏2k+1

(2𝑘+1)!!

𝑛
𝑘=1 . 

Where (2𝑘 + 1)!! represents the double factorial of (2𝑘 + 1), which is the product of all 

odd integers up to (2𝑘 + 1)!!. 

So, the closed form series solution for the given Volterra integral equation is: 

 𝑢(𝜏) = lim
𝑛→∞

𝑢𝑛(𝜏) = 𝜏 + ∑
𝜏2k+1

(2𝑘+1)!!

𝑛
𝑘=1 . 

Example 4.2. Solve the following VIE 

𝑢(𝜏) = −1 + 𝑒  𝜏 +
1

2
 𝜏2𝑒  𝜏 −

1

2
∫ 𝑡𝑢(𝑡)𝑑𝑡

 𝜏

0

, 

Solution. Consider the recurrence relation to round zeros u(τ)  we choose 𝑢(0) = 0. 

We next use the iteration formula 

𝑢𝑛+1(𝜏) = −1 + 𝑒  𝜏 +  𝜏2𝑒  𝜏 −
1

2
∫ 𝑡𝑢𝑛(𝑡)(𝑡)𝑑𝑡, 𝑛 ≥ 0

 𝜏

0

Substituting 𝑢0(𝜏), we get

𝑢1(𝜏) = −1 + 𝑒  𝜏 +  𝜏2𝑒  𝜏

𝑢2(𝜏) = −3 +
1

4
𝜏2 + 𝑒  𝜏 (3 − 2 𝜏 +

5

4
𝜏2 −

1

4
 𝜏3),

𝑢3(𝜏) = 𝜏 (1 −  𝜏 +
 𝜏2

2!
−

 𝜏3

3!
+

 𝜏4

4!
+ ⋯ ),

𝑢𝑛+1(𝜏) = 𝜏 (1 −  𝜏 +
 𝜏2

2!
−

 𝜏3

3!
+

 𝜏4

4!
+ ⋯ ) =  𝜏𝑒− 𝜏.

5. Converting initial value problem to volterra integral equation

Conversion from Normal Differential Equation to Volterra Integral Equation: One

intriguing aspect of integral equations is their connection to ordinary differential equations. 

We demonstrate the systematic process of converting an initial value problem of a normal 

differential equation into a Volterra integral equation. Through a series of mathematical 

transformations, we establish a bridge between these two seemingly distinct mathematical 

formulations. 

In this section, the problem will change from the initial value of the common differential 

equation to the combined VIE and VIE problems. For simplicity, we will use this process to 
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issue the initial value of the second introductory class 

𝑦′′(𝜏) + 𝑝(𝜏)𝑦′(𝜏) + 𝑞(𝜏)𝑦(𝜏) = 𝑔(𝜏),

𝑦(0) = 𝛼, 𝑦′(0) = 𝛽,

where α and β are constants. The 𝑝(𝜏), and 𝑞(𝜏), functions are analytical, and 𝑔(𝜏) continues 

during the discussion period. To achieve our goal we set it first 

𝑦′′(𝜏) = 𝑢(𝜏),

where 𝑢(𝜏) is a continues function. Integrating both sides of  𝑦′′(𝜏) = 𝑢(𝜏)   from 0 to τ

yields 

𝑦′′(𝜏) − 𝑦′(0) = ∫ 𝑢(𝑡)𝑑𝑡,
 𝜏

0

or equivalently 

𝑦′(𝜏) = 𝛽 + ∫ 𝑢(𝑡)𝑑𝑡
 𝜏

0

. 

Integrating both sides of the last equation from 0 to 𝜏, we get 

𝑦(𝜏) − 𝑦(0) = 𝛽 𝜏 + ∬ 𝑢(𝑡)𝑑𝑡𝑑𝑡

 𝜏

0

 

Remark 5.1.  If 

𝐺(𝜏) = ∬ 𝐹(𝑡)𝑑𝑡𝑑 𝜏

 𝜏

0

= ∫ (𝜏 − 𝑡)𝐹(𝑡)𝑑𝑡
 𝜏

0

, 

𝑑

𝑑 𝜏
𝐺(𝜏) = ∫ 𝐹(𝑡)𝑑𝑡

 𝜏

0

. 

Then, 𝑦(𝜏) is equivalently 

𝑦(𝜏) = 𝛼 + 𝛽 𝜏 + ∫ (𝜏 − 𝑡)𝑢(𝑡)𝑑𝑡.
 𝜏

0

 

Substituting 𝑦′′(𝜏), 𝑦′(𝜏), and 𝑦(𝜏) into the initial value problem above yields the Voltera

integral equation: 

𝑢(𝜏) + 𝑝(𝜏) [𝛽 + ∫ 𝑢(𝑡)𝑑𝑡
 𝜏

0

] + 𝑞(𝜏) [𝛼 + 𝛽 𝜏 + ∫ (𝜏 − 𝑡)𝑢(𝑡)𝑑𝑡
 𝜏

0

] = 𝑔( 𝜏). 

Thus, the equation above can be written in the form of a standard integral equation Voltera: 

𝑢(𝜏) = 𝑓(𝜏) − ∫ 𝑊(𝜏, 𝑡)𝑢(𝑡)𝑑𝑡,
 𝜏

0

 

where 

𝑊(𝜏, 𝑡) = 𝑝(𝜏) + 𝑞(𝜏)(𝜏 − 𝑡), 

and 

𝑓(𝜏) = 𝑔(𝜏) − [𝛽𝑝(𝜏) + 𝛼𝑞(𝜏) + 𝛽𝜏𝑞(𝜏)]. 

Example 5.1. Convert the following initial value problem to the Voltera integral problem 

Equivalent: 

𝑦′(𝜏) − 2𝜏𝑦(𝜏) = 𝑒  𝜏2
,  𝑦(0) = 1. 

We first set 
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𝑦′(𝜏) = 𝑢(𝜏).

Integrating both side, using the initial condition 𝑦(0) = 1. we have 

𝑦(𝜏) − 𝑦(0) = ∫ 𝑢(𝑡)𝑑𝑡
 𝜏

0

, 

or equivalently 

𝑦(𝜏) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
 𝜏

0

. 

Substituting 𝑦′(𝜏) and 𝑦(𝜏) into a given initial value problem gives the equivalent Voltera

integral equation: 

Conclusion 

In conclusion, this study has presented a thorough investigation into the solutions of 

Volterra integral equations utilizing the method of successive approximations. Furthermore, 

we demonstrated the procedure of converting initial value problems of normal differential 

equations to Volterra integral equations and Volterra integral differential equations. We hope 

that by combining theoretical analysis, numerical examples, and practical applications, we 

have improved the reader's knowledge of this mathematical technique and their consequences 

in diverse scientific disciplines. 

Future Research: This study offers up new directions for investigation, such as the 

investigation of more sophisticated ways for solving integral equations, the application of 

these techniques to more intricate and specialized integral equations, and the creation of 

algorithms for effective numerical implementation. 
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