
Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

1

Vol. 72 No. 2 (2023)

http://philstat.org.ph

Fog Computing Performance Optimization in Healthcare

Environment

Ameenah Mohammad Alharbi1 and Mohammed Abdullah Al-Hagery1

1Department of Computer Science College of Computer

Qassim University Buraydah 51452 Saudi Arabia

Article Info

Page Number: 01 – 23

Publication Issue:

Vol 72 No. 2 (2023)

Article History

Article Received: 15 February 2023

Revised: 20 April 2023

Accepted: 10 May 2023

Abstract: Cloud computing is very powerful and efficient technology, but it

suffers from some efficiency issues due to its distributed nature. With the

advent of fog, the large cloud is divided into many small cloudlets. Fog

computing is one of the latest techniques in today’s cloud computing

environment. Each cloudlet is a small and new architectural element extending

today’s cloud computing infrastructure. The term” cloudlets” has been

combined with fog computing, as it enhances the characteristics of cloud

computing. Today, fog computing represents a basic layer and an essential

cloud component. Consequently, this technology can help solve efficiency

issues. Therefore, this paper aims to improve the efficiency of the cloud

computing environment by optimizing the efficiency parameters results of fog

computing. The parameters include response time, latency, and network

utilization. The solution is to design a simulation system to minimize the

redundancy of tasks and increase the performance rate. The results show an

improvement in the performance of the proposed system from 40 to 48%

based on the three parameters (response time, network utilization, and

latency). Therefore, these results are promising and very significant, which

encourages the applying the proposed system in the real healthcare

environment.

Keywords: - Cloud Computing; Fog Computing; Performance Parameters;

Response Time; Network Utilization; Latency; Healthcare.

1. Introduction

Fog computing is a new framework for the geographic distribution of computing resources.

Fog computing is similar to cloud computing. It serves as a gateway to computing resources

and uses similar service concepts as cloud computing. Unlike cloud computing, which focuses

on a few high-performance data centers, fog Computing relies on many highly dynamic and

heterogeneous resources with reasonable capacity, called fog nodes. The main advantage of

fog computing over cloud computing is its proximity to end devices such as sensors, actuators,

smartphones, smart cameras, Internet of Things (IoT) devices, etc. It manages and utilizes

resources effectively [1].

IoT continues to evolve in parallel with advances in relevant technologies. The term”IoT”

has gained popularity and is now commonly used. The United States, the European Union,

China, Japan, and Korea have introduced IoT development projects nationally. Many

researchers have noted that the IoT contains a growing number of new technologies and has

become a necessity in the life of society [2]. IoT architectures have been thoroughly researched

to serve mass applications [3]. The main reason for separating data processing from

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

2

Vol. 72 No. 2 (2023)

http://philstat.org.ph

applications is that the cloud computing service often appears as a third party. In reality,

massive data processing remains an IoT bottleneck. Some researchers have suggested for years

that cloud computing could solve this problem and have proposed numerous cloud-based IoT

architectures [4], [5]. The significance of our contribution lies in improving the efficiency of

cloud computing through fog computing to operate at high efficiency while reducing the

resources required performing the tasks. The objective of this paper is to minimize the

challenges of cloud computing through fog computing by optimizing the performance values

based on the following parameters:

• Response Time

• Network utilization

• Latency

Many experiments were conducted, a simulation system was developed, and a tuning process

for the values of the selected parameters was performed by selecting the best scenario for the

simulation system to be applied in a real environment. The system consists of three layers;

cloud layer, fog layer, edge layer, and cloudSim. After that, the iFogSim was applied in a

healthcare case study.

The rest of the paper is organized as follows: section 2 introduces cloud computing and fog

computing in the context of healthcare, including basic principles and concepts of fog

computing architecture. Whereas section 3 discusses the related works. The research

methodology is presented in section 4, which also explains the simulation tools used in the

proposed method, while section 5 demonstrates the results and discussion. Section 6 presents

the conclusions, and section 7 highlights future work.

2. Cloud computing and fog computing

There is a lack of consensus in standardizing fog computing, cloudlets, edge computing, and

other terms have been used to describe fog. Different research groups have proposed many

different definitions of fog. Since there is a research gap in definitions and standards for fog

computing, this paper uses the definitions of Atlam et al., [6], [7], in which fog computing is

defined as a type of distributed computing architecture, which manages a set of application

services locally in the network and smart devices. In contrast, others are managed in the cloud

[8]. This section highlights some paradigms proposed to bring the cloud closer to the end

devices. In addition, it explains the advantages and disadvantages of introducing fog computing

as an ideal platform for IoT.

IoT has revolutionized the ever-evolving field of information and communication

technology. Today’s smart technologies, such as tablets, computers, and smartphones, have

changed how machines, sensors, and vehicles are used in a variety of applications [9]. Basir et

al. claimed that cloud computing further enhances the user experience in current applications

by providing real-time processing, low latency and storage, and high data rate reliability.

Nguyen et al. noted that using edge devices in combination with the Multi-Access Edge

Computing (MAEC) paradigm gives fog computing a significant advantage in web

optimization and ensures reliability in the context of responsive service.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

3

Vol. 72 No. 2 (2023)

http://philstat.org.ph

Unlike servers that rely solely on Content Delivery Networks (CDNs), the combination of

fog-cloud computing and the MAEC paradigm has improved computing performance.

Currently, the new IoT devices are more fixated on using smaller and smaller processors while

increasing memory and speed as microprocessor technology continues to grow [10]. According

to Basir et al., wireless sensors have promoted the use and application of fog-cloud computing

in various applications, such as traffic monitoring, patient state monitoring, etc. Consequently,

modern devices’ storage capacities have been increased by applying advanced computing

techniques enabled by fog nodes [11]. As a result, advances continue to be made in

microprocessor technology that uses smaller CPUs and more memory to provide a better user

experience. Many research studies focused on fog and cloud computing, botnets, and

Distributed Denial of Service (DDoS) that highlight their various technological characteristics

[12]. Open edge computing describes edge computing as a data processing paradigm. It offers

small data facilities (edge nodes) close to users and is designed to provide an enhanced

customer experience by interacting with storage and compute resources just a hop away from

the viewer [5]. The open fog consortium notes that fog computing is often mistakenly referred

to as edge computing, but there is a big difference between the various terms. Although they

share similar concepts, edge computing is limited to edge devices (i.e., in the IoT node network)

and excludes the cloud from its architecture [13]. On the other hand, fog computing is a multi-

layer network not limited to a local network but offers services everywhere from the cloud to

objects [7]. The ”extreme edge” of IoT analytics is pushed to the ”extreme edge” by fog

computing [14]. In this new computing paradigm, the fog has spread even further, where the

fog computing layer consists of fog nodes, so-called because of its lightweight. It is even closer

to the end devices than the fog nodes, which are specialized and dedicated nodes with minimal

computing resources (e.g., microcomputers and microcontrollers).

The IoT is a set of interconnected devices connected with a network with sensors to improve

the collection and exchange of data with the cloud at the fog computing level. The IoT involves

connecting numerous devices to improve data analysis and autonomous decision-making. An

IoT system consists of various functional blocks, which provide different functions for the fog

computing system. These blocks include communication, devices, management, services, and

applications [15].

The devices facilitate the exchange and collection of data from other related devices, such as

cloud-based devices. The IoT system provides functions such as data publishing, device

control, device recovery, device modeling, and data analytics. The application layer serves as

an interface that provides essential modules for monitoring and controlling various aspects of

the system [16].

Regarding the IoT, fog computing could be considered the first (optional) layer. The IoT fog-

cloud systems’ design, development, and operation require significant financial investment and

simulators. There are reviews of cloud, IoT, and fog simulators that summarize their

fundamental capabilities and compare them based on specific metrics [17]. However, some of

these simulators can already examine the behavior of the IoT-fog cloud system to a limited

extent. Comparing two cloud simulators based on the intelligent weighting capabilities of

Virtual Machine (VM) placement methods was also an inspiration for the research work [18].

This is a similar strategy compared to more advanced versions of these simulators.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

4

Vol. 72 No. 2 (2023)

http://philstat.org.ph

A. Cloud Computing Services and Challenges

Cloud computing provides users with numerous computing, communication, and problem-

solving services. Google, IBM, Microsoft, and Amazon are examples of the most prominent

cloud service providers. Cloud services are typically offered on a pay-as-you-go basis [19].

Consequently, users only pay for their computing resources and data management services.

On the other hand, cloud computing has several characteristics, such as rapid elasticity, large

scale, on-demand self-service, high extensibility, ubiquitous network access, and resource

pooling. This means that the scope of the cloud can be increased to meet high customer

demands [20], [21]. In contrast, cloud computing suffers from many challenges from rapidly

growing technology, such as security, confidentiality, integrity, availability, isolation,

authentication, identification, and authorization [22].

These challenges lead to data manipulation and dissemination of inaccurate or misleading

information to users. On the other hand, authentication and authorization [23]. Due to the

technological advancements in today’s world, the cloud is still struggling with this difficulty

and is developing new solutions every day [24]. For a customer expecting better security in

cloud computing, this is disastrous. Another critical challenge with cloud computing is

confidentiality. If an attacker is in a virtual machine, it is easy to eavesdrop on the other device,

find its address name, and access the customer’s data. Data loss is possible, and some solutions

for this situation have been presented [25].

B. Features and Architecture of fog computing

Fog computing is consistent with edge computing, where tasks are moved to the edge [26].

In other words, it is an end-to-end architecture that brings network functions closer to users.

Fog computing is characterized by its edge location, which allows it to process applications

with low latency [27]. Fog computing is characterized by location awareness, which means

that the fog node can track end users’ devices and infer their location to enable mobility easily.

As a result, the relationships between fog and cloud, also between fog and fog, become more

important as fog computing becomes more capable of capturing the required data [28]. The

architecture of fog computing includes the following:

1. Terminal layer or edge layer: It is a lower layer consisting of IoT devices, sensors, and actuators

that communicate directly with the user, where data is transmitted from these devices. The

lower-level devices have no processing capabilities.

2. Fog layer: This layer consists of different types of nodes, such as switches, gateways, routers,

access points, and fog servers arranged in two layers. The lower-level fog nodes have lower

computational capacities than the higher-level fog controller node. The fog controller node

controls the entire node cluster.

3. Cloud layer: The nodes in this layer have extensive resources that provide cloud services. The

communication latency is very high when the applications are deployed in the cloud layer.

More energy is consumed for the cooling system in the cloud. To promote the control

functionality of the fog environment. In [29], the authors demonstrate a general system

architecture of the fog integrated with the cloud and they highlight the heterogeneously

distributed nodes forming a cluster. Each cluster has a control node called the Fog Controller

Node (FCN).

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

5

Vol. 72 No. 2 (2023)

http://philstat.org.ph

1) Simulation and Tools:

 Simulator is software that depends on mechanisms with a collection of mathematical

equations [30]. Many simulators and tools can simulate such environments and measure various

properties such as latency, network utilization, and response time. Some of the simulators and

tools intended for fog computing [31] are as follows:

• CloudSim: is the most popular simulation tool for the cloud computing environment, developed

by the GRID lab at the College of Melbourne [32], which enables seamless modeling and

simulation of cloud computing infrastructure development. Researchers can use this simulator

to focus on a specific system design for the cloud system infrastructure.

• iFogSim: is one of the simulations of fog computing environments to evaluate resource

management and planning strategies. It works over the closest cloud resources to the end device

under different scenarios. It allows designing different architecture scenarios for fog computing

and evaluating different aspects such as the network bandwidth [31]. In this simulator, any fog

environment infrastructure is simulated by adding fog nodes and edge devices with features

such as resource capabilities. A Graphical User Interface (GUI) creates the network topology

for building the entire infrastructure in JSON format. This simulator can also measure

performance metrics and simulate edge devices [33].

• Cloud analyst: is an open-source simulator obtained from the cloud that allows determining the

performance of cloud services. It simulates a geographically distributed environment that is

used to evaluate the performance of computing servers [34]. The simulator’s configuration

parameters can be adjusted as the researcher desires to evaluate their design. Some customized

parameters are the number of requests generated per user per hour, the number of nodes, the

amount of memory, the number of processors, the number of virtual machines, the network

bandwidth, and other necessary parameters.

Identifying an appropriate simulator depends on the analysis processes of the requirements.

As seen from the previous description of the three simulators, CloudSim is the simulator

specifically for the cloud environment. Its results are displayed in the console, not in a graphical

user interface. It also does not fully consider the location of the end device and the data center.

In this simulator, proximity is also not considered as a whole. Therefore, clouds would not be

preferable. The next simulator is iFogSim, a fog computing simulator designed for resource

management and scheduling policy in a fog environment. This simulator has strong points,

such as measuring the required performance parameters, and has some limitations, such as

unsupported and challenging to understand horizontal communication. The third simulator is a

cloud analyst that allows the description of endpoints and data centers. It includes information

about the location of users generating tasks, the geographic location of data centers, and the

number of endpoints, nodes, and resources in each node. This information can be used to

determine performance metrics such as processing time, response time, and response cost.

2) Fog Modeling in iFogSim:

iFogSim is one of the most widely used cloud and fog computing research, both of which use

CloudSim-based extensions [31]. The following are the primary physical components of

iFogSim [32]:

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

6

Vol. 72 No. 2 (2023)

http://philstat.org.ph

• A Java-based simulator: sensors that generate data as a tuple to represent information.

• Actuators with a geographic location and gateway connection reference;

• Sensors that generate data in the form of a tuple representing information.

 iFogSim’s AppModule and AppEdge are the key logical components that attempt to mimic

a distributed application. To run an application on a fog device, module mapping, and

controller are the two key management components [33]. The request is forwarded to a

higher-level object if a fog device is not discovered. Specifying a fog system’s physical and

logical elements is necessary before defining the control unit itself [34].

3) Literature Comparison of iFogSim:

Based on the review and investigation, it is found that, in general, CloudSim is ineffective in

simulation modeling for fog. The iFogSim is considered the most optimal simulation tool due

to some features, including; performing hands-off migration, performing live migrations,

outsourcing better, having an advanced IoT management option, supporting shutdown, and

providing advanced networking options. The most significant advantage is its mobility support,

which other simulation tools lack. Consequently, the iFogSim is the best simulating tool for

fog using the 3D modeling principle [35].

4) Comparison between the modern Fog and traditional Fog implemented in EHS:

 Table 1 presents a comparison applied to the traditional fog having un-optimized features and

modern fog having optimized features has a very sharp difference in terms of parameters. The

modern fog uses a clustered indexed approach in which the IoT actuators send the response to

the IoT devices. The last and final layer is the fog, instead of the cloud layer in modern fog

architecture. With the advent of clusters, the downtime has been reduced to a minimum because

of the next-hope concept. Where each time the next hope takes the request, whenever the new

request is not ready to accept the challenge of IoT actuators. If the clustered approach is not

ready to accept the request because of flooding or overloading. The request is moved to the

upper layer called the Fog implementation layers which inherits the same properties as the

centralized Cloud for processing the request and if there come any issues that cannot fulfilling

the request due to the Fog approach busy the request then moved to the centralized Cloud

servers leaving all the architecture behind [35].

Table 1. Traditional and Modern Fog

Modern Fog Traditional Fog

Clustered Non-clustered

No-Cloudlets Cloudlets

Less processing power More processing power

Fast response rate Slow response rate

Increase in 0 downtime Decrease in 0 downtime

Faster rate Slow rate

Migrations Non-Migrations

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

7

Vol. 72 No. 2 (2023)

http://philstat.org.ph

3. Related Works

Much research has been done to improve the performance of fog computing architecture,

resource management, and task scheduling algorithm concepts. For example, Abdulgalil [36]

proposed a multi-layer fog computing architecture based on the analysis of Electrocardiography

(EEG) signals. The proposed architecture compares three layers. The first layer is responsible

for generating data and transmitting it to the second layer. The second layer takes advantage of

emerging fog computing technology for lightweight analysis based on ECG signals. The third

layer is responsible for comprehensive analysis based on EEG signals and data storage in the

cloud. In addition, Abdelaziz [37] presented a new concept of collaboration architecture for

fog computing. The proposed architecture represents a reference model to better design and

implement fog platforms. The proposed architecture provides a reference model to simplify

and make the design and implementation of fog platforms more efficient. Santos [38] designed

a multi-layer fog computing architecture consisting of three layers at the edge, near the end

device in the cloud. The performance of downloading video from multiple layers in a given

geographic area was evaluated with multimedia applications. Salman and Jain [15] introduced

an IoT fog cloud framework to reduce service delay for IoT applications. The analytical model

was developed to evaluate their policy of the proposed framework, which shows how it helps

reduce the IoT service delay. Hao et al. [39] proposed a prototype system in the software

architecture of fog computing to integrate various designs of IoT communication devices with

fog nodes. The design includes a prototype software architecture showing the evaluation of this

system.

To provide a solution for IoT services, Varghese et al. [40] proposed a hybrid fog-cloud

architecture for low response applications, such as firefighting, that supports a growing variety

of applications, including fifth-generation wireless systems and those in IoT, as well as

embedded Artificial Intelligence (AI). In addition, Gupta and Dastjerdi [41] studied a task-

offloading strategy to minimize energy consumption in mobile devices and developed a

priority-based task scheduling algorithm using an edge server. Execution time and execution

cost in task data size and latency requirements are performance metrics. The performance

evaluation results show that the proposed algorithm reduces the task completion time and

improves the quality of services.

Likewise, Mohan et al. proposed a distributed task processing on the edge of fog-cloud

participating in the network to assign the processing tasks to the nodes. They developed the

Least Processing Cost First (LPCF) method, which is the optimal processing time [42]. Peixoto

et al. [23] also introduced a scheduling algorithm in the hierarchical layer of fog and cloud

computing with three-tier architecture. Their work shows the scheduling strategies that can be

developed in a fog computing environment. In their research, the scheduler prioritizes cloudlet

usage and optimizes other objectives, such as reducing network utilization and cloud cost.

Furthermore, Kafhali and Sala [43] proposed a task scheduling algorithm in fog computing

devices based on classification and data mining techniques. They have developed a novel

classification algorithm and task-scheduling model based on the Apriori algorithm. The task

with the least completion time was selected to be executed at the fog node with the least

completion time. Also, Wang et al. [31] proposed task scheduling in the fog computing

scenario. This strategy is based on a hybrid heuristic algorithm, which mainly solves the

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

8

Vol. 72 No. 2 (2023)

http://philstat.org.ph

problem of terminals with limited computing resources, making the system suitable for real-

time and efficient terminal processing tasks. Moreover, Nguyen et al. [44] introduced a new

algorithm to optimize task scheduling problems for a bundle of tasks in a cloud-fog

environment regarding execution time and operation cost.

The proposed algorithm can flexibly meet users’ requirements for high-performance

processing and cost efficiency. Their work is limited because they only tested the algorithm on

small data sets. Many algorithms for task scheduling in cloud computing and fog computing

are used in the real environment. However, there are many algorithms for task scheduling in

fog computing, as shown in Table 2. The two algorithms with a good response time are First

Come First Served (FCFS) and Shortest Job First (SJF), where the SJF usually gives better

solutions as described in the literature.

In addition, there are other scheduling algorithms, such as the Round Robin (RR) algorithm:

In Round Robin scheduling, where the processes are dispatched in a FIFO manner but are given

a limited amount of CPU time called a time-slice or quantum of time. If a process does not

complete before its CPU time expires, the CPU is preempted and given to the following process

waiting in a queue. The preempted process is then placed at the back of the ready list [45], as

well as the min–min algorithm, which chooses small tasks to be executed first, thereby delaying

the large tasks for a long time. Likewise, the max-min algorithm chooses large tasks to be

executed first, thereby delaying the small tasks for a long time [45], [46].

In some related works, the task scheduling algorithm is used on three-level algorithms that

cannot consider the capacity of fog nodes and task priority. In this case, the incoming tasks

from the IoT device are directly assigned to the available fog node without considering the

node’s capacity. Moreover, in the proposed algorithm, the tasks are classified based on their

size and scheduled with the appropriate layer of the fog architecture to reduce the response

time.

Table 2. Comparison of Task Scheduling Algorithms

The proposed algorithm overcomes the limitations of the existing algorithms, such as the

FCFS and SJF. It uses the four-layer architecture and assigns the task to each of the

corresponding layers of fog computing. Then it minimizes the starvation problem and reduces

response time.

Scheduling

algorithms

Description Architecture Parameters

Limitations

FCFS [43].

Tasks were

assigned to VM by

using

the arrival time

Third tiers (IoT

device, fog node,

cloud node)

Arriving time,

resource

availability

It doesn’t consider the

capability of the

resource, response time

and tasks Priority

SJF [31]

Small tasks are

assigned first to

VM by considering

resource

availability

Third tiers (IoT

device, fog node,

cloud node)

Availability of

resources, and

data size

It doesn’t consider the

capability of the

resource, response

time, and starvation

may occur.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

9

Vol. 72 No. 2 (2023)

http://philstat.org.ph

4. The Methodology

The proposed approach is a network composed of cloud nodes, various fog nodes, and edge

devices. The exact coordinates are continuously determined for the cloud nodes before the

simulation. The fog nodes and edge devices are generated with arbitrary coordinates according

to a uniform distribution. Initially, the fog nodes are connected to the cloud nodes by default,

regardless of their distances. However, the edge devices will not have any connections with the

cloud node or fog nodes at the beginning. After that, the nodes will start connecting the edge

devices to the fog nodes when these nodes are within a predefined coverage area assigned to

each fog node. The procedures include three scenarios, as follows:

1) When the device is not within the range of any fog node, the application will be sent

directly to the cloud. (2) When the device is within only one fog node and then check for:

• If this node has enough resources, then the application as a whole is sent to this node.

• If this node does not contain enough resources required by the device, then the node will start

checking for any neighboring fog nodes in its scope, which can be combined to form a

neighboring group.

• If no fog nodes are in the scope to form a cluster or the potential neighbor groups that cannot

handle the application. The request, in this case, is forwarded to the cloud through the initial

node that received the request.

(3) When the machine falls within the range of many fog nodes, then there are three

probabilities:

(a) At least one node has enough resources, so the application is sent to the node, giving the

shortest response time. None of the nodes can handle the request independently, so it

checks if more than one node can handle the application together to form an in-scope

collection.

(b) Potential in-scope groups don’t have the necessary resources, so then in-scope nodes will

start checking neighboring nodes for inclusion to form a new adjacency group.

(c) Potential neighbor groups cannot process the request, so the request is forwarded to the

cloud through the node closest to the device. Selecting the most appropriate fog node to

form an in-scope or an adjacency group for a request service depends on a semantic

description of the nodes’ resources and application requirements, e.g., memory, node

processing power, number of tasks, task size, and number of task instructions.

The requested tasks’ distribution among the cluster’s fog nodes is treated as an optimization

problem to reduce the number of nodes used and the response time. The steps of the proposed

methodology can be summarized as follows:

1. Identify the basic requirements for the proposed system to optimize cloud computing

performance.

2. Initiate cloud layer.

3. Initiate the fog layer.

4. Initiate edge layer.

5. Applying optimization algorithm.

6. Check the node’s availability.

7. Close resources and provide the final results.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

10

Vol. 72 No. 2 (2023)

http://philstat.org.ph

Figure 1 shows the flowchart of the proposed system, which represents the simulation

processes to improve the performance of fog computing based on an actual case study. The

steps represent all the programming phases the system goes through by simulating each layer

to improve the performance and get the results.

The algorithm of the proposed system contains the pseudocode of the simulation processes

of improving the performance of fog computing according to the selected case study. At startup,

the cloud layer shows the availability of on-demand computing resources, specifically data

storage (cloud storage) and computing power.

In large clouds, tasks are often distributed across multiple data centers. Cloud computing

takes advantage of resource sharing in healthcare to keep data consistent. Healthcare also has

emergency response systems that require real-time operations. A distributed component must

be added to the traditional centralized cloud computing architecture.

Fig. 1. The flowchart of the proposed system

In a distributed architecture, tasks are split and distributed across multiple nodes. Figure 2

shows the structure of the class diagram of the system. Also, it displays the main classes of

iFogSim. The class interaction model shows the components and the relationships between

these components of the simulation system.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

11

Vol. 72 No. 2 (2023)

http://philstat.org.ph

Fig. 2. Main classes of iFogSim.

On the other hand, Figure 3 demonstrates the sequence diagram of the interaction between

the sensor and fog device execution. A data tuple is generated by a sensor and sent to the gate

to which the sensor is connected. The callback function is used to handle the incoming data

tuple that is invoked as soon as the tuple reaches the fog device (input).

Fig. 3. Sequence diagram of the interaction between the sensor and fog device execution

If the group needs to be forwarded to another fog device, it will be sent immediately without

processing. The performance parameters play an essential role in this contribution. These

parameters are a set of design criteria that, if changed, would significantly affect the

performance, schedule, cost, and risk of the system or facility. The performance parameters

targeted by the proposed approach are latency, response time, and network utilization.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

12

Vol. 72 No. 2 (2023)

http://philstat.org.ph

Algorithm 1 : optimizing the fog computing performance

Start

Initiate cloudlayer Initiate foglayer Initiate edgelayer

Sensing data through the sensor module from the edge layer and add encryption

me = c(moden)

Applying optimization algorithm

if nearest node is available then

Decrypt and process

cd = (me)dm(moden)

Send result to an actuator

Send a copy of the result to datacenter

else if next nearest node is available then

Decrypt and process

cd = (me)dm(moden)

Send result to the actuator

Send a copy of the result to datacenter

else if Node is available in maximum waiting time then

Decrypt and process

else

Return to cloud Close Resources Results

end if

End

A. Response Time

The response time is the time it takes for the fog or cloud servers to respond to perform a

given task and deliver the results. Increasing the response time value will increase latency and

delays, but minimizing the response time will result in better performance in managing and

monitoring patient requests over the network. This, in turn, will decrease the response time in

fog and cloud, being able to process more requests in a unit of time, improve system

performance, and serve patients in less time. The earlier fog servers are migration-based and

geographically separated, residing in different locations in the cloud. The leading cloud is far

from the fog servers, which handle requests from endpoints and actuators rather than the cloud

over the network. In the case study of the patient ECG, the end device has the patient

information over the network, which the fog server will pick up. An increase in response time

will cause extensive delays. The mathematical equations (1) and (2) are used to determine the

value of the response time 47] for fog and cloud, respectively.

RT (Xij) = ET (Xij) + Tt(Xij) (1)

Where ET is the execution time, Tt is the transmission time for the request (sending the

request with data) and response (receiving the results), Xij refers to the task ti assigned to

the fog node fj, while Xicloud refers to the assignment of the task ti to the cloud.
RT (Xicloud) = ET (Xicloud) + TrTime(Xicloud) (2)

Equations (1) and (2) are implemented using the ”PrintDetails()” method of the Simulator.java

class as in APPENDIX A.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

13

Vol. 72 No. 2 (2023)

http://philstat.org.ph

B. Network utilization

It is also called network usage and the amount of data targeted by the cloud or fog computing

approach. It is one of the most important parameters and a primary factor in dealing with cloud

or fog computing architecture.

When the state-of-the-art system is used for patient monitoring and healthcare, it may be

insufficient as it is a cloud-based system. In a cloud-based system, the problem of delay is

raised. Therefore, it may take some time to convert the generated data to the cloud, and patients

need real- time processing for healthcare data in a short time. For this reason, a monitoring

system based on the fog computing paradigm is proposed. It processes data quickly, in real-

time, and locally near the end devices.

The system resources characterize network utilization regarding data sent and received at the

network interfaces. The file ”NetworkUsageMonitor.java” is implemented for calculating the

network utilization based on the latency metric in fog and cloud computing, depending on

equations (3) and (4). Where Nu denotes the network utilization.

Nu(Cloud) = Nu(cloud) + latency × tupleNwSize (3)

Nu(Fog) = Nu(Fog) + latency × tupleNwSize (4)

While latency is used here to measure the time required for packets to travel from source to

destination, tupleNwSize refers to the data packets consumed during the ping process by fog

and cloud servers using a tuple of data. As well the network utilization Nu of the execution is

also calculated using (3) and (4), using the simulator’s” getNetworkUsage()” method, which is

an extension of the NetworkUsageMonitor.java class, as in APPENDIX C.

C. Latency

Latency is the delay of the service once it is requested. It can be due to many factors, such as

the architecture of the service was not good; the tasks of fog computing are usually shifted to

the edge servers, called cloudlets, and sometimes to the edge devices. The main tasks are split

and assigned to specific nodes or hops. In our scenario of an Electronic Health System (EHS)-

based application, network latency, and service delays occur once tasks are completed in the

cloud instead of in the fog.

The cloud servers meet the requirements at the cloud level, the application processes data

late, and the preview of information comes late compared to fog. Where the latency is reduced

by adding the cloudlets and edge devices under the central cloud due to the computation of

edge and fog. Where the application uses the mathematical model of latency shown in the two

equations (5) and (6), for cloud and fog, respectively:

L(Cloud) = (pinging + TaskIncreased)/ActiveTime (5)

L(Fog) = (pinging + TaskIncreased)/ActiveTime (6)

Where L is the latency and ping is the time it takes for a small data set to be transferred from

the patient’s device to a server on the Internet and back to that device. Active time is when the

application takes from the first response to receiving the results after processing. The total

delay during the execution of the workflow application starts at the time of the request in the

fog or cloud environment and is calculated based on the code shown in APPENDIX B.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

14

Vol. 72 No. 2 (2023)

http://philstat.org.ph

The cloud often has almost unlimited resources but is far from IoT endpoints, making it

unsuitable for providing high-quality services to IoT devices. Edge computing, which has

recently emerged as an extension of the cloud, moves massive processing and storage capacity

to the network edge, forming an edge layer close to IoT end devices. As a result, many

compute-intensive and resource-intensive activities can be moved from resource-constrained

end devices to the resource-rich edge layer [48].

D. The Case Study

The case study is a healthcare system in which patients are equipped with ECG sensors.

Patients are continuously monitored by the health module located on hospital servers. The

nodes continuously process the heartbeat and analyze the patient’s health

status. The patients have actuator modules, and the data is transmitted from the actuators to the

clusters connected to the module components. This component is connected to the fog

implementation server, and the fog is directly connected to the central cloud. The central cloud

always receives many patient requests. Still, a problem occurs because the central cloud

performs less than the actual fog implementation through the edge server. Moreover, fog

computing is centralized computing with decentralized nature of the requests coming from the

edge layers. Figure 4 shows how performance is doubly optimized. This work was

implemented using a case study of EHS through the fog application network, with the help of

fog servers connected to the central cloud. A path is set up for each patient, where each patient

has a channel over the Internet. Also, each patient has the following things; a record in the

medical history, a previous profile, and all the information needed to make strategic decisions

in the future when a doctor is needed. For this purpose, the physician needs live information

about the patient on the ventilator and receives live data that the physician module continuously

monitors and acts on.

Fig. 4. EHS System Optimization

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

15

Vol. 72 No. 2 (2023)

http://philstat.org.ph

The live data comes from the actuators and the live sensors. The news feeds are also transmitted

to the central network of the application. The data is sensitive and the sensors require tracking

and identification. For this purpose, the data is transmitted from the fog server to the main

application servers in the cloud, but the middle layer is the fog layer with the cloudlets.

The purpose of the cloudlets is to store the additional data and process the tasks required by

the fog individually. The nodes in the cloudlet layers’ process data much faster than ever

before, which reduces many things like downtime and latency.

5. Results and Discussion

This section focuses on the results obtained when applying the proposed methodology. The

metrics considered include network utilization, response time, and latency. The values of these

metrics were optimized. The results yielded optimal values and the system performance

improved clearly. The results are explained and discussed in the following subsections.

A. Response Time

The mathematical implementation of response time is achieved by the node/link bypass

model, according to (1) and (2). The results are calculated as in the following two examples.

First, by fog:

RT (Xij) = ET (Xij) + Tt(Xij)

= 2.0721+8.022=10.09442

Second by the cloud:

RT (Xicloud) = ET (Xicloud) + Tt(Xicloud)

= 6.8999+13.79952=20.6995

The response time decreased in the base implementation of fog compared to the cloud. The

case study of a patient ECG shows that the nearest fog server picks up the early tasks containing

the patient information for ECG recording over the network.

Table 3. Comparison of Cloud and Proposed Fog Model for Response

Task ET Cloud ET Fog Tt Cloud Tt Fog Cloud Proposed Fog

500 6.89998 2.0721 13.79952 8.022 20.6995 10.09442

1000 9.39877 3.5421 15.79443 8.95982 25.19632 12.50192

2000 10.2902 5.5421 20.58064 10.2893 30.87084 15.8314

4000 13.4697 7.04721 26.9394 11.8555 40.4091 18.90272

Table 3 and Figure 5 show the experimental results of cloud and fog concerning the response

time when processing a given task. This table shows that the response time increases

exponentially as the number of tasks increases. Moreover, comparing the curves for cloud and

fog server activities shows a big difference in the response time values of tasks, as in the case

of the last task (4000), which represents the total number of server activities to be executed.

When all these requests are processed, the cloud requires an average response time of 40.4091,

while the time required for the same process by the proposed fog model is only 18.90272. This

reduces the time required to process the ECG tasks for patients and triggers through the

proposed fog network. In Figure 5, the two curves give a clear picture of the fog and the cloud’s

response time, clearly comparing their similarities and differences. The ECG trigger task is

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

16

Vol. 72 No. 2 (2023)

http://philstat.org.ph

periodically increased and sent to cloud and fog simultaneously. As mentioned earlier, cloud

and fog differ significantly in their response to requests. In addition, Table 3 and Figure 5 show

the time spent in the cloud and fog, equal to 20.6995 and 10.09442, respectively. These values

indicate that the patient’s ECG tasks are processed in fog by a short response time, and the

same tasks in the cloud take longer. This gives a clear indicator of response time reduction and

gives the optimal time as the number of tasks increases using the fog.

Fig. 5. Response time comparison for cloud and fog computing

B. Network Utilization

Network utilization is the proportion of current traffic to the maximum amount of traffic that

can be handled. It reflects how much data the network processes via fog or cloud computing.

The average network utilization in the system is the total network consumed by the cloud or

fog servers. Figure 6 shows the network utilization values of cloud and fog measured in

milliseconds, which shows that the current cloud demand is satisfied in this time frame

according to the proposed fog. The values obtained from the proposed fog are 2325.2, which

stands for the network used by the fog. The value 75159 represents the network used by the

cloud. Table 4 shows the time increases with the number of experiments, and the network

utilization in the cloud is much higher than that of the proposed fog. Therefore, it was found

that the fog uses much less network than the cloud.

Table 4. Network Utilization

The calculation of network utilization, achieved by 4 experiments, the results of Table 4

calculated by (3) and (4) as follows:

• Node experiment 1

Nu(Fog) = Latency × tupleNwSize

= 0.6643 × 3500 = 2325.2

S/No Task L-cloud (ms) L-fog(ms) tupleNwSize Nu(Cloud) Nu(Fog)

1 500 21.474 0.6643 3500 75159 2325.2

2 1000 27.114 8.0973 3500 94901 28340.85

3 2000 36.952 11.343 3500 129332 39701.9

4 4000 48.633 13.464 3500 170216.6 47126.7

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

17

Vol. 72 No. 2 (2023)

http://philstat.org.ph

Nu(Cloud) = Latency × tupleNwSize

= 21.474 × 3500 = 75159

• Node experiment 2

Nu(Fog) = Latency × tupleNwSize

 = 8.0973 × 3500 = 28340.85

Nu(Clod) = Latency × tupleNwSize

 = 27.114 × 3500 = 94901

Fig. 6. Comparison between cloud and proposed fog based on network utilization

C. Latency

Latency is the delay in getting the service due to many factors, such as the system architecture

and components. Table 5 shows the data and latency results of both cloud and fog. In the table,

the active time in the first column indicates when the application responds to display the results.

Fog computing tasks are usually outsourced to edge servers called cloudlets, sometimes called

edge machines. The main tasks are split and assigned to specific nodes. In the EHS-based

application scenario, network latency and service-level delay are reduced when tasks are

completed in the cloud instead of in the fog. Cloud servers meet the requirements at the cloud

level, the application finishes processing the data late, and the preview of the information

comes later than in fog computing, which completes the processing of the data and then

displays the information early.

Table 5. Comparison of Latency Results

Active time L(Fog) L(cloud) Tasks Fog pinging(sec) Cloud pinging(sec)

25 22.977 30.836 500 74.430041 270.904

50 21.666 27.064 1000 83.337661 353.2144

100 20.953 24.19 2000 95.345306 419.092

200 20.616 24.732 4000 123.36905 946.5893

400 15.308 17.5 6000 123.43454 1020.345

Mathematical equations (5) and (6) are used to calculate the latency in the application for

cloud and fog, respectively. These are two examples for calculating the latency, as follows:

First, for cloud:

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

18

Vol. 72 No. 2 (2023)

http://philstat.org.ph

L(Cloud)=(pinging+task increased)/active time, where L(Cloud) = (270.904 + 500)/25

L(Cloud) = 30.836 seconds

30.8 is the latency delay for the cloud request processed of 500 tasks. Second, for fog:

L(Fog)=(pinging+task increased)/active time, where L(Fog)= (74.43 + 500)/25

L(Fog)= 22.977 seconds

In the first experiment, Table 5 shows the results of both cloud and fog when the system has

the same number of tasks. The latency is 30.836 seconds for cloud and 22.977 seconds for fog

when the number of tasks =500. In this experiment, the fog servers achieved better results, with

a difference of 10.2 seconds. In Table 4, the results also indicate that when the number of tasks

is 1000, the cloud latency was 27.064 seconds, while the fog latency was reduced to 21.666

seconds. Moreover, the last value gives a clear overview of cloud application latency. With a

corresponding increase in the tasks to 6000, the cloud latency was 17.500 seconds, while the

fog was reduced to 15.308 seconds when the active time was 400 seconds. As well as with the

other experiments. The results of latency are shown in Figure 7. It found that the curve of fog

does not increase drastically with the increase of tasks on the cloudlets, and the latency

reduces and is controlled appropriately by the fog server.

Based on the previous results and comparisons, it found a clear reduction of the fog’s latency

compared to the cloud’s latency in all values with an increase of tasks and active time, and the

processing is much faster with fog than in the cloud. Consequently, the latency was improved

and reasonably controlled with the fog server compared to the cloud results.

D. Derived Results for Comparing the Traditional Fog and Modern Fog

We derived results using the simulation software named iFogSim simulation module to

optimize performance indicators, which are latency, network utilization, and response time.

Fig. 7. Comparison between cloud and proposed fog based on latency

Results are quite clear in implementing the whole process over modern Fog and traditional

fog with the same structure, let us share some summary of the parameters and discuss the whole

application process that obtained in the derived results of the comparison shown in Table 6 and

7.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

19

Vol. 72 No. 2 (2023)

http://philstat.org.ph

Table 6. Traditional Fog Results

Response time Latency Network utilization

667.65 milliseconds 93.5 0.0303

400.56 milliseconds 96.7 0.0308

500.56 milliseconds 94.5 0.0304

600.23milliseconfds 97.8 0.0308

Table 7. Modern Fog Results

Response time Latency Network utilization

500.65 milliseconds 70.5 0.0103

300.56 milliseconds 79.7 0.0180

400.56 milliseconds 80.5 0.0208

490.23milliseconfds 83.8 0.0200

6. Conclusion

The proposed system was implemented in a simulation environment for the EHS using three

layers (cloud, fog, and edge). The application was packaged and containerized using fog

servers connected to the centralized and compact cloud through the fog application network.

The data is transmitted from the fog server to the main application servers in the cloud, but the

middle layer is the fog layer, which contains cloudlets. The cloudlets store additional data and

perform tasks that need to be done individually by fog. Cloudlets are the sub-layer that

complements the main fog layer and allows the cloudlet layer tasks and data node processing

to be performed much faster than ever before, reducing many factors like downtime and

latency. Optimizing the entire system in the fog environment was achieved. The performance

parameters show positive changes in terms of latency, response time, network utilization, and

performance of applications using fog computing and over-the-edge. The objective of this

paper was to process the main functions of fog in an optimized form so that the optimization

and sharing of the processes are done in a fast and accurate method, which was not possible

before due to the implementation based only on cloud computing. The results show that the

proposed system achieves very significant results. The response time, latency, and network

utilization were optimized to a better level. Based on the obtained and discussed simulation

results in the previous sections. The proposed system can be applied in the real environment

and thus provides excellent results and achieves significant benefits in terms of performance

optimization according to the optimization parameters discussed above.

7. Future Work

Another significant modification that can be made in the future in the same E-health system

is to increase the number of equivalent nodes. These nodes can process the incoming requests

from the operator devices willing to accept the request from the operator. Similarly, the demand

coming from the geographically dispersed clinics in the city can be processed by cloudlets

since the request originates from there. The proposed simulation system can also be deployed

and tested in other domains until it achieves the best possible performance of fog computing.

Furthermore, the performance criteria can be extended to cover other important

characteristics. For instance, the wireless network channel can also be another factor that can

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

20

Vol. 72 No. 2 (2023)

http://philstat.org.ph

be considered. In addition, the ability to identify whether the fog node reliability can be used

in the node selection criteria, specifically in case the fog node is battery operated.

Funding

This research has been funded by the Scientific Research Deanship at Qassim University,

Saudi Arabia, under the number (COC-2022-1-1-J-25647) during the academic year 1444

AH/2022 AD.

Acknowledgment

The author(s) gratefully acknowledge Qassim University, represented by the Deanship of”

Scientific Research, on the financial support for this research under the number (COC-2022-1-

1-J-25647) during the academic year 1444 AH / 2022 AD”.

References

[1] Y. Liu, J. E. Fieldsend, and G. Min, “A framework of fog computing: Architecture, challenges,

and optimization,” IEEE Access, vol. 5, pp. 25445–25454, Oct. 2017, doi:

10.1109/ACCESS.2017.2766923.

[2] Awotunde, J. B., Bhoi, A. K., & Barsocchi, P. (2021). Hybrid cloud/fog environment for

healthcare: An exploratory study, opportunities, challenges, and prospects. In Hybrid Artificial

Intelligence and IoT in Healthcare (pp. 1-20). Springer, Singapore.

[3] Tabrizchi, H., Kuchaki Rafsanjani, M. A survey on security challenges in cloud computing:

issues, threats, and solutions. J Supercomput 76, 9493–9532 (2020).

https://doi.org/10.1007/s11227-020-03213-1

[4] Gurjanov, A. V., Korobeynikov, A. G., Zharinov, I. O., & Zharinov, O. O. (2021). Edge, fog,

and cloud computing in the cyber-physical systems networks.

[5] Abdali, T. A. N., Hassan, R., Aman, A. H. M., & Nguyen, Q. N. (2021). Fog Computing

Advancement: Concept, Architecture, Applications, Advantages, and Open Issues. IEEE

Access, 9, 75961-75980.

[6] Jafari, V., & Rezvani, M. H. (2021). Joint optimization of Energy Consumption and time delay

in IoT-fog-cloud computing environments using NSGA-II metaheuristic algorithm. Journal.

[7] H. F. Atlam, R. J. Walters, and G. B. Wills, ”Fog computing and the internet of things: A

review”, Big Data and Cognitive Computing, vol. 2, no. 10, pp. 1-18, 2018.

[8] M. Chiang, S. Ha, F. Risso, T. Zhang, and I. Chih-Lin, ”Clarifying fog computing and

networking: 10 questions and answers,” IEEE Communications Magazine, vol. 55, no. 4, pp.

18-20, 2017.

[9] S. Chatterjee, ”Fog Computing Applications, in Sensors, Cloud, and Fog: The Enabling

Technologies for the Internet of Things,” CRC Press, pp 167-186, 2019.

[10] N. A. C and R. Lavanya, ”Fog computing and its role in the internet of things, in Advancing

Consumer-Centric Fog Computing Architectures,” IGI Global, pp. 63-71, 2019. [

[11] B. M. Nguyen, H. T. T. Binh, and B. D. Son, ”Evolutionary algorithms to optimize task

scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing

environment,” Applied Sciences, vol.9, no.9, p. 1730, 2019.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

21

Vol. 72 No. 2 (2023)

http://philstat.org.ph

[12] X. An, J. Su, X, Lu, and F. Lin, ”Hypergraph clustering model-based association analysis of

DDOS attacks in fog computing intrusion detection system,” EURASIP Journal on Wireless

Communications and Networking, no. 1, pp.1-9, 2018.

[13] S. Svorobej et al., ”Simulating fog and edge computing scenarios: An overview and research

challenges,” Future Internet, vol. 11, no. 3, p55, 2019.

[14] E. M. Dogo, A. F. Salami, C. O. Aigbavboa, and T. Nkonyana, ”Taking cloud computing to

the extreme edge: A review of mist computing for smart cities and industry 4.0 in Africa,”

Edge computing, pp.107-132, 2019.

[15] T. Salman and R. Jain, ”Networking protocols and standards for internet of things,” Internet

of Things and Data Analytics Handbook, pp. 215-238, 2017.

[16] P. P. Ray, ”A survey on Internet of Things architectures,” Journal of King Saud University-

Computer and Information Sciences, vol. 30, no. 3, pp. 291-319, 2018.

[17] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, ”Fog computing for the internet

of things: A survey,” ACM Transactions on Internet Technology (TOIT), vol, 19, no. 2, pp. 1-

41, 2019.

[18] Y. Kong, Y. He, and K. Abnoosian, ”Nature-inspired virtual machine placement mechanisms:

A systematic review,” Concurrency and Computation: Practice and Experience, vol. 34, no.

11, p. 6900, 2022.

[19] P. Mell and T. Grance, The NIST definition of cloud computing. National Institute of Standards

and Technology U.S. Department of Commerce, 2011.

[20] P. Kalagiakos and P. Karampelas, ”Cloud Computing learning,” 2011 5th International

Conference on Application of Information and Communication Technologies (AICT), pp. 1-4,

2011.

[21] C. Modi, D. Patel, B. Borisaniya, A. Patel, and M. Rajarajan, ”A survey on security issues and

solutions at different layers of Cloud computing,” The journal of supercomputing, vol. 63, no.

2, pp. 561-592, 2013.

[22] S. S. Islam, M. B. Mollah, M. I. Huq and M. A. Ullah, ”Cloud computing for future generation

of computing technology,” 2012 IEEE International Conference on Cyber Technology in

Automation, Control, and Intelligent Systems (CYBER), pp. 129-134, 2012.

[23] S. Hashemi and M. Zarei, ”Internet of Things backdoors: resource management issues, security

challenges, and detection methods,” Transactions on Emerging Telecommunications

Technologies, vol. 32, no. 2, p. e4142, 2021.

[24] S. Hashemi and M. Zarei, ”Internet of Things backdoors: resource management issues, security

challenges, and detection methods,” Transactions on Emerging Telecommunications

Technologies, vol. 32, no. 2, p. e4142, 2021.

[25] R. P. Padhy, M. R. Patra, and S. C. Satapathy, ”Cloud computing: security issues and research

challenges,” International Journal of Computer Science and Information Technology &

Security (IJCSITS), vol. 1, no. 2, pp. 136-146, 2011.

[26] S. Yi, C. Li, and Q. Li. ”A survey of fog computing: concepts, applications and issues,”

Proceedings of the 2015 Workshop on Mobile Big Data (Mobidata ’15), 2015.

[27] S. Khan, S. Parkinson, and Y. Qin, ”Fog computing security: a review of current applications

and security solutions,” Journal of Cloud Computing, vol. 6, no. 1, pp. 1-22, 2017.

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

22

Vol. 72 No. 2 (2023)

http://philstat.org.ph

[28] R. Cziva, S. Jou ë t, D. Stapleton, F. P. Tso and D. P. Pezaros, ”SDN-Based Virtual Machine

Management for Cloud Data Centers,” in IEEE Transactions on Network and Service

Management, vol. 13, no. 2, pp. 212-225, 2016.

[29] M. Taneja and A. Davy, “ScienceDirect Resource based placement of data analytics algorithm

in fog computing,” Procedia - Procedia Computer Science, vol. 00, no. October. pp. 18–20,

2015, [Online] . Available: http://dx.doi.org/10.1016/j.procs.2016.08.295.

[30] S. Yi, Z. Hao, Z. Qin and Q. Li, ”Fog Computing: Platform and Applications,” 2015 Third

IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 73-78, 2015.

[31] A. Markus and A. Kertesz, ”A survey and taxonomy of simulation environments modelling

fog computing,” Simulation Modelling Practice and Theory, vol. 101, p. 102042, 2020.

[32] A. M á rkus, P. Gacsi, and A. Kerté sz. ”Develop or Dissipate Fogs? Evaluating an IoT

Application in Fog and Cloud Simulations,” 10th International Conference on Cloud

Computing and Services Science, 2020.

[33] R. Mahmud and R. Buyya, ”Modelling and simulation of fog and edge computing

environments using iFogSim toolkit,” Fog and edge computing: Principles and paradigms, pp.

1-35, 2019.

[34] E. Marin-Tordera et al., ”What is a fog node a tutorial on current concepts towards a common

definition,” arXiv preprint arXiv:1611.09193, 2016.

[35] M. Al-khafajiy, T. Baker, A. Waraich, D. Al-Jumeily and A. Hussain, ”IoT-Fog Optimal

Workload via Fog Offloading,” 2018 IEEE/ACM International Conference on Utility and

Cloud Computing Companion (UCC Companion) pp. 359-364, 2018.

[36] H. D. Abdulgalil, ” A Multi-Tier Distributed fog-based Architecture for Early Prediction of

pileptic Seizures”, M.S. thesis, University of Waterloo, 2018.

[37] J. Abdelaziz, ”Architectural model for Collaboration in the Internet of Things: a Fog

Computing based approach,” M.S. thesis, Universit Montréal, Accueil, 2018.

[38] H. L. M. D. Santos, ”A Multi-tier fog architecture for video on demand streaming,” M.S. thesis,

Federal University of Par ´A Institute of Tecnology, 2018.

[39] Z. Hao, E. Novak, S. Yi and Q. Li, ”Challenges and Software Architecture for Fog Computing,”

in IEEE Internet Computing, vol. 21, no. 2, pp. 44-53, 2017.

[40] B. Varghese, C. Rea ño and F. Silla, ”Accelerator Virtualization in Fog Computing:

Moving from the Cloud to the Edge,” in IEEE Cloud Computing, vol. 5, no. 6, pp. 28-37,

2018.

[41] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, R. Buyya, ”iFogSim: A toolkit for modeling and

simulation of resource management techniques in the Internet of Things, Edge and Fog

computing environments,” Software: Practice and Experience, vol. 47, no. 9, pp. 1275-1296,

2017.

[42] N. Mohan and J. Kangasharju, ”Edge-Fog cloud: A distributed cloud for Internet of Things

computations,” 2016 Cloudification of the Internet of Things (CIoT), pp. 1-6, 2016.

[43] S. E. Kafhali and K. Salah, ”Efficient and dynamic scaling of fog nodes for IoT devices,” The

Journal of Supercomputing, vol. 73, no. 12, pp. 5261-5284, 2017.

[44] B. M. Nguyen, H. T. T. Binh, and B. D. Son, ”Evolutionary algorithms to optimize task

scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing

environment,” Applied Sciences, vol.9, no.9, p. 1730, 2019.

http://dx.doi.org/10.1016/j.procs.2016.08.295

Mathematical Statistician and Engineering Applications

ISSN:2094-0343

2326-9865

23

Vol. 72 No. 2 (2023)

http://philstat.org.ph

[45] S. Iftikhar, M. M. Ahmad., S, Tuli., D, Chowdhury, M, Xu, S, S, Gill, & S, Uhlig. (2023).

HunterPlus: AI based energy-efficient task scheduling for cloud–fog computing environments.

Internet of Things, 21, 100667.

[46] M, Saad, R. I, Qureshi, & A. U, Rehman. (2023, January). Task Scheduling in Fog Computing:

Parameters, Simulators and Open Challenges. In 2023 Global Conference on Wireless and

Optical Technologies (GCWOT) (pp. 1-6). IEEE.

[47] A. Bonguet and M. Bellaiche, ”A survey of denial-of-service and distributed denial of service

attacks and defenses in cloud computing,” Future Internet, vol. 9, no. 3, p. 43, 2017.

[48] G. Mantas, N. Stakhanova, H. Gonzalez, H. H. Jazi, and A. A. Ghorbani, ”Application-layer

denial of service attacks: taxonomy and survey,” International Journal of Information and

Computer Security, vol. 7, no. 2/3/4, pp. 216-239, 2015.

Appendices

A : Response time source code

B: Latency source code

C: Network utilization source code

