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Introduction

A very popular tool to solve existence of fixed point problems is the Banach Contraction Theorem [2] which
plays an important role in several branches of mathematics. Bakhtin [2] the concept of b-metric spaces and by
generalizing the famous Banach contraction principle in metric spaces proved the contraction mapping principle
in b-metric spaces. Recently, the fixed point in non-convex analysis, especially in an ordered normed space,
occupies a prominent place in many aspects (see [6 — 11]), the author defines an ordering by using a cone,
which naturally induces a partial ordering in Banach spaces. Moreover, some fixed point theorems were proved
for contractive mappings expanding certain results of fixed points in metric spaces (see [4,5,12,14,15]). Later
some fixed point theorems for b —metric spaces were given by Xie and Wang [12]. Throughout this paper, we
have proved a generalization of fixed point theorem for results for 8 — ¢ — contractaction mappings in
complete b —metric space by using triangular inequality.

2. Definitions Preliminaries

Definition 2.1. ([12]) Let (X, d) be a nonempty setand s > 1 be a given real number. A functiond: X x X —
[0, 0) is a b —metric if, for all x, y, z € X, the following conditions are satisfied:

(b1) d(x,y) =0if and only if x =y,

(b2) d(x,y) = d(y,x),

(b3) d(x,z) < s[d(x,y) +d(y,2)]

In this case, the pair (X, d) is called a b —metric space.

It should be noted that, the class of b —metric spaces is effectively larger than that of metric spaces; every
metric is a b —metric with s = 1.

Definition 2.2. ([12]) Let {x,,} be a sequence in a b-metric space (X, d).
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{x,} is called b —convergent if and only if there is x € X such that d(x,,,x) = 0 asn — oo.

b. {x,}isab —Cauchy sequence if and only if d(x,, x,,) = 0 asn,m — oo.

A b-metric space (X, d) is said to be complete if and only if each b —cauchy sequence in this space is
b —convergent.
Lemma 2. 3. ([11]) Let (X, d) be a b —metric space with s > 1.
If a sequence {x,,} € X is a b —convergent sequence, then it admits a unique limit.
Every b-convergent sequence in X is b —cauchy.
Definition 2.4. ([10]) Let (X, d) be a b-metric space. A subset Y c X is called closed if and only if for each
sequence {x,} in Y which b-converges to an element x, we have x €Y.

Zheng et al [13] introduced a new type of contractions called & — ¢p —contractions in metric spaces and
proved a new fixed point theorem for such mapping.
Definition 2.5. ([10]) We denote by O the set of function 8 : [0, ] — [1, ] satisfying the following
conditions:
(6,) 8 Is increasing;
(6,) For each sequence (x,) € [0, Oo]'rlli_r)?o’e(x") =1 rlll_r)goxn = 0;

(65) 6 1s continuous on [0, o].

Definition 2.6.([10]) We denote by @ the set of function ¢ : [1, 0] — [1, o] satisfying the following
conditions:

(1) ¢:[1,0] = [1, 0] Is non-decreasing;

(¢,) For each sequence (x,,) € [0, oo]’,lilgo’(p(x”) =1;

(¢p3) 6 Is continuous on [1, co].

Definition 2.7.([12]) Let X be a non empty set and 6: X X X — [1,00). A function dgy : X X X — [0, o) is
called b —metric if for all x, y, z € X it satisfies:

dol do(x,y) =0iff x=y;

dg2 dg(x,y) = dg(y,x);

dg3 do(x,2) < 0(x,2)[dg(x,y) +dy(y,2)].

The pair (X, dy) is called b-metric.

Remark 2.8. If 8(x,y) = s for s = 1 then we obtain the definition of a b-metric space

Theorem 2.9. Let(Z, d) be a complete b-metric space with k > 1 and let R : Z — Z be a continuous mapping

satisfying the contractive condition
d(u, Ru)d(u, Rv) + d(v, Rv)d(v, Ru)
6(d(Ru,Rv)) < ¢ |4y a(w, Rv) + d(v, Rw)

Forall u,v € Z andy, € [0,1]. Then R has a unique fixed point in Z.

3. Main Results
Theorem 3.1. Let (Z,d) be acomplete b —metric space with k > 1 andletR : Z — Z be a continuous mapping
satisfying the contractive condition
d(u, Ru)d(u, Rv) + d(v, Rv)d (v, Ru) d(Ru,v) + d(u,v)][1 + d(v, Rv)
6(d(Ru, Rv)) < ¥, d(w, Rv) + d(v, Rw) 2 | 1+ d(u],[v) ]
+Y3d(w,v) (1
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Forall u,v € Z and 4, Y,, Y5 € [0,1] with k(2 + 1, + 13) < 1. then R has a unique fixed point in Z.
Proof. Let z, be an arbitrary point in Z. Define a sequence {z,} in Z such that z; = R(z,), z; = R(z), ... ...
Replace u by z,,_, and v by z, in (1), we have
Q(d(znrzn+1)) = qb(d(RZn—erZn))
<y, d(zn—1,Rzn_1)d(z_1, Rzy) + d(zy, R2,)d(zp, Rz )
- d(Zn—lf Rzn) + d(zn’ RZn—l)
+ i, [d(Rzp_1,2n) + d(Zn—1,2p)1[1 + d(2, Rzp)]
1+ d(zp-1,2n)
+3d(Zp_1, Zp)
A(zp-1,2n)d(Zn-1, Zn+1) + A2y, Zn11)d(2p, 2p,) + i [d(zn, zn) + d(Zn-1,2p)1[1 + d(2p, Zp41)]
d(Zn-1,Zn+1) + d(zp, 2,) ? 1+ d(zp-1,2n)

<Y

+3d(2n-1, Zn)
Using triangular inequality
d(zn-1,2n)k(d(zn-1,2n) + d(2y, Zn41) + d(Zn'Zn+1)k(d(Zn—1'Zn) + d(zy, Zn+1))
k(d(zn—pzn) + d(zp, Zn+1))
[d(zn, 2,) + d (251, 22)][1 + d(2y, Zp41)]
1+ k(d(zn-1,2,))
+3d(2n-1, Zn)
< (d(Zn—l'Zn) + d(z,, Zn+1)) + lpz(d(zn' Zn-1) + d(Zp41, Zn)) + Y3d(zn-1, 2y)
Therefore

= ¥1

2

Y1+, + 9
e(d(zn' Zn+1)) = 11_—Zw3d(zn—1' zp) = hd(z,_1,2,) (2)
1
Where h = %j% <1askQyp, + P, +s) < 1.
we have
H(d(zn—l' Zn)) < hd (Zn—z' Zn—l)
By (2) we get,

H(d(zn' Zn+1)) = hzd(zn—Z'Zn—l)
Continue this process, we get
H(d(zn' Zn+1)) < hnd(znrzo)
Since0 < h < 1lasn— o, h™ - 0.Thus {z,} is complete b —metric space in Z such that T (u = limT (z,,) =
limz, ., = u. Thus u is a fixed point of R.
Uniqueness:
Let u € U is a fixed point of R. then by (1),
B(d(u, u)) = ¢(d(Ru, Ru))
d(u,u)d(u,u) + d(u,u)d(u,u) [du,u) + d(u, w)][1 + d(u,u)]
=t d(u,u) + d(u,u) T2 1+d(u,u)
< (Y1 + 2 +P3)d(w,w).
Which is true only if d(u,u) = 0,since 0 < k(2y; + Y, + ¥3) < land d(u,u) = 0. Thusd(u,u) = 0,if Z
is a fixed point of R. then we have,
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d(u,v) = d(Ru, Rv) < Y,d(u,v)
Which gives d(u, v) = 0, since 0 < ¢, < 1 and d(u,v) = 0. Thus fixed point of R is unique.
Example:3.2. Let Z = [0,1]. Define d: Z X Z - R* by
lu+v| + |lu—v|
2

dwv)=|lu+v|®>+|lu—v|*+

uv

For all u,v € Z. Define F(u,v) = 5

Example:3.3. Let Z = {p.q,7,s,t,u,v,w},E =R? and p = {(u,v):u,v = 0} is a b-metric in E. Define
d:Z x X - E as follows:
dlu,u)=0,vz€eZ
d(p,q) = d(q,p) = (8,64)
d(p,r) =d(r,p) =d(r,s) =d(s,r) =d(q,v) =d(r,q) =d(q,s) = d(s,q) = d(p,t) = d(t,p)
=d(p,w) =d(up) = (18)
d(p,u) =d(u,p) =d(q,t) =d(t,q) =d(r,u) =d(u,r) =d(s,u) =du,s) =d(t,u) = d(u,w)
= (10,70)
Then d(Z, d) is a complete b —metric space,

4. Conclusion

Hence in this paper we have proved a fixed point theorem for 6 — ¢p — contraction mapping in complete
b —metric space by using triangular inequality, which is generalization and extension of the results due to Mitiku
et al [10], Rossafi et al [11].
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