A Research on Bipolar Valued Vague Normal Subrings of A Ring

${ }^{1}$ b.Deeba, ${ }^{2}$ s. Naganathan $\boldsymbol{\&}^{\mathbf{3}}$ k.Arjunan
${ }^{1}$ Department of Mathematics, Idhaya College for Women (affiliated to Alagappa University, Karaikudi), Sarugani - 630411, Tamilnadu, India. Email:bdeepa85@gmail.com
${ }^{2}$ Department of Mathematics, Sethupathy Government Arts College (affiliated to Alagappa University, Karaikudi), Ramanathapuram -623 502, Tamilnadu, India. Email: nathanaga @ yahoo.com
${ }^{3}$ Department of Mathematics, Alagappa Government Arts college (affiliated to Alagappa University, Karaikudi), Karaikudi - 630003, Tamilnadu, India. Email: arjunan.karmegam@gmail.com

Article Info

Page Number: 1926-1933
Publication Issue:
Vol. 72 No. 1 (2023)

Article History

Article Received: 15 November 2022
Revised: 24 December 2022
Accepted: 18 January 2023

Abstract

In this paper, bipolar valued vague normal subring of a ring is introduced and some properties are discussed. bipolar valued vague normal subring of a ring is a generalized form of vague normal subring of the ring, vague normal subring of the ring is a generalized form of fuzzy normal subring of the ring and fuzzy normal subring of the ring is a generalized form of ring.

Key Words. Fuzzy subset, vague subset, bipolar valued fuzzy subset, bipolar valued vague subset, bipolar valued vague subring, bipolar valued vague normal subring, intersection, product, strongest, height.

Introduction:

In 1965, Zadeh [15] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval valued fuzzy sets, vague sets, soft sets etc. Grattan-Guiness [8] discussed about fuzzy membership mapped onto interval and many valued quantities. Vague set is an extension of fuzzy set and it is appeared as a unique case of context dependent fuzzy sets. The vague set was introduced by W.L.Gau and D.J.Buehrer [7]. Lee [9] introduced the notion of bipolar valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval $[0,1]$ to $[-1,1]$. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree $(0,1]$ indicates that elements somewhat satisfy the property and the membership degree $[-1,0)$ indicates that elements somewhat satisfy the implicit counter property. Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [9, 10]. Fuzzy subgroup was introduced by Azriel Rosenfeld [2]. RanjitBiswas [12] introduced the vague groups. Cicily Flora. S and Arockiarani.I [4] have introduced a new class of generalized bipolar vague sets. Anitha.M.S., et.al.[1] defined as bipolar valued fuzzy subgroups of a group and Balasubramanian.A et.al[3] have defined the bipolar interval valued fuzzy subgroups of a group. K.Murugalingam and K.Arjunan[11] have discussed about interval valued fuzzy subsemiring of a semiring and Somasundra Moorthy.M.G.,[13] gave a idea about the fuzzy ring. Bipolar valued multi fuzzy
subsemirings of a semiring have been introduced by Yasodara.B and KE.Sathappan[14]. Deepa.B., et.al.[5] defined as bipolar valued vague subrings of a ring. Here, the concept of bipolar valued vague subring of a ring is introduced and estaiblished some results. Particularly, bipolar valued vague normal subring of a ring is introduced in this paper.

1.Preliminaries.

Definition 1.1. [15] Let X be any nonempty set. A mapping $M: X \rightarrow[0,1]$ is called a fuzzy subset of X.

Definition 1.2. [7] A vague set A in the universe of discourse U is a pair $\left[t_{A}, l-f_{A}\right]$,where $t_{A}: \mathrm{U} \rightarrow[0,1]$ and $\mathrm{f}_{\mathrm{A}}: \mathrm{U} \rightarrow[0,1]$ are mappings, they are called truth membership function and false membership function respectively. Here $t_{A}(x)$ is a lower bound of the grade of membership of x derived from the evidence for x and $f_{A}(\mathrm{x})$ is a lower bound on the negation of x derived from the evidence against x and $t_{A}(\mathrm{x})+f_{A}(\mathrm{x}) \leq 1$, for all $\mathrm{x} \in \mathrm{U}$.

Definition 1.3. [7] The interval $\left[t_{A}(x), 1-f_{A}(\mathrm{x})\right.$] is called the vague value of x in A and it is denoted by $\mathrm{V}_{\mathrm{A}}(\mathrm{x})$, i.e., $\mathrm{V}_{\mathrm{A}}(\mathrm{x})=\left[t_{A}(x), 1-f_{A}(\mathrm{x})\right]$.

Example 1.4. $A=\{\langle a,[0.5,0.6]\rangle,\langle b,[0.7,0.8]\rangle,\langle c,[0.4,0.9]\rangle\}$ is a vague subset of X $=\{a, b, c\}$.

Definition 1.5. [9] A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form $\mathrm{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{x})\right\rangle / \mathrm{x} \in \mathrm{X}\right\}$, where $\mathrm{A}^{+}: \mathrm{X} \rightarrow[0,1]$ and $\mathrm{A}^{-}: \mathrm{X} \rightarrow[-1,0]$. The positive membership degree $\mathrm{A}^{+}(\mathrm{x})$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative membership degree $\mathrm{A}^{-}(\mathrm{x})$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A.

Example 1.6. $\mathrm{A}=\{\langle\mathrm{a}, 0.5,-0.3\rangle,\langle\mathrm{b}, 0.4,-0.6\rangle,\langle\mathrm{c}, 0.4,-0.7\rangle\}$ is a bipolar valued fuzzy subset of $X=\{a, b, c\}$.

Definition 1.7. [5] A bipolar valued vague subset A in X is defined as an object of the form $\mathrm{A}=\left\{\left\langle\mathrm{x},\left[t_{A}^{+}(x), 1-f_{A}^{+}(x)\right],\left[-1-f_{A}^{-}(x), t_{A}^{-}(x)\right]\right\rangle / \mathrm{x} \in \mathrm{X}\right\}$, where $t_{A}^{+}: \mathrm{X} \rightarrow[0,1]$, $f_{A}^{+}: \mathrm{X} \rightarrow[0,1], t_{A}^{-}: \mathrm{X} \rightarrow[-1,0]$ and $f_{A}^{-}: \mathrm{X} \rightarrow[-1,0]$ are mapping such that $t_{A}(\mathrm{x})+f_{A}(\mathrm{x}) \leq 1$ and $-1 \leq t_{A}^{-}+f_{A}^{-}$. The positive interval membership degree $\left[t_{A}^{+}(x), 1-f_{A}^{+}(x)\right]$ denotes the satisfaction region of an element x to the property corresponding to a bipolar valued vague subset A and the negative interval membership degree $\left[-1-f_{A}^{-}(x), t_{A}^{-}(x)\right]$ denotes the satisfaction region of an element x to some implicit counter-property corresponding to a bipolar valued vague subset A . Bipolar valued vague subset A is denoted as $\mathrm{A}=\left\{\left\langle\mathrm{x}, V_{A}^{+}(x), V_{A}^{-}(x)\right\rangle / \mathrm{x} \in \mathrm{X}\right\}$, where $V_{A}^{+}(x),=\left[t_{A}^{+}(x), 1-f_{A}^{+}(x)\right]$ and $V_{A}^{-}(x)=\left[-1-f_{A}^{-}(x), t_{A}^{-}(x)\right]$.

Note that. $[0]=[0,0],[1]=[1,1]$ and $[-1]=[-1,-1]$.

Example 1.8. $[\mathrm{A}]=\{\langle\mathrm{a},[0.3,0,6],[-0.6,-0.2]\rangle$, < b, [0.3, 0.4], $[-0.5,-0.3]\rangle$, $<c,[0.2,0.6],[-0.5,-0.2]>\}$ is a bipolar valued vague subset of $X=\{a, b, c\}$.

Definition 1.9. [5] Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$and $\mathrm{B}=\left\langle V_{B}^{+}, V_{B}^{-}\right\rangle$be two bipolar valued vague subsets of a set X . We define the following relations and operations:
(i) $[\mathrm{A}] \subset[\mathrm{B}]$ if and only if $V_{A}^{+}(\mathrm{u}) \leq V_{B}^{+}(\mathrm{u})$ and $V_{A}^{-}(\mathrm{u}) \geq V_{B}^{-}(\mathrm{u}), \forall \mathrm{u} \in \mathrm{X}$.
(ii) $[\mathrm{A}]=[\mathrm{B}]$ if and only if $V_{A}^{+}(\mathrm{u})=V_{B}^{+}(\mathrm{u})$ and $V_{A}^{-}(\mathrm{u})=V_{B}^{-}(\mathrm{u}), \forall \mathrm{u} \in \mathrm{X}$.
(iii) $[\mathrm{A}] \cap[\mathrm{B}]=\left\{\left\langle\mathrm{u}, \operatorname{rmin}\left(V_{A}^{+}(\mathrm{u}), V_{B}^{+}(\mathrm{u})\right), \operatorname{rmax}\left(V_{A}^{-}(\mathrm{u}), V_{B}^{-}(\mathrm{u})\right)\right\rangle / \mathrm{u} \in \mathrm{X}\right\}$.
(iv) $[\mathrm{A}] \cup[\mathrm{B}]=\left\{\left\langle\mathrm{u}, \operatorname{rmax}\left(V_{A}^{+}(\mathrm{u}), V_{B}^{+}(\mathrm{u})\right), \operatorname{rmin}\left(V_{A}^{-}(\mathrm{u}), V_{B}^{-}(\mathrm{u})\right)\right\rangle / \mathrm{u} \in \mathrm{X}\right\}$. Here rmin $\left(V_{A}^{+}(\mathrm{u}), V_{B}^{+}(\mathrm{u})\right)=\left[\min \left\{t_{A}^{+}(x), t_{B}^{+}(x)\right\}, \min \left\{1-f_{A}^{+}(x), 1-f_{B}^{+}(x)\right\}\right], \operatorname{rmax}\left(V_{A}^{+}(\mathrm{u}), V_{B}^{+}(\mathrm{u})\right)$ $=\left[\max \left\{t_{A}^{+}(x), t_{B}^{+}(x)\right\}, \max \left\{1-f_{A}^{+}(x), 1-f_{B}^{+}(x)\right\}\right], \operatorname{rmin}\left(V_{A}^{-}(u), V_{B}^{-}(\mathrm{u})\right)=$ $\left[\min \left\{-1-f_{A}^{-}(x),-1-f_{B}^{-}(x)\right\}, \min \left\{t_{A}^{-}(x), t_{B}^{-}(x)\right\}\right], \operatorname{rmax}\left(V_{A}^{-}(\mathrm{u}), V_{B}^{-}(\mathrm{u})\right)=[\max$ $\left.\left\{-1-f_{A}^{-}(x),-1-f_{B}^{-}(x)\right\}, \max \left\{t_{A}^{-}(x), t_{B}^{-}(x)\right\}\right]$.

Definition 1.10. [5] Let R be a ring. A bipolar valued vague subset A of R is said to be a bipolar valued vague subring of R (BVVSR) if the following conditions are satisfied,
(i) $V_{A}^{+}(\mathrm{x}-\mathrm{y}) \geq \operatorname{rmin}\left\{V_{A}^{+}(\mathrm{x}), V_{A}^{+}(\mathrm{y})\right\}$
(ii) $V_{A}^{+}(\mathrm{xy}) \geq \operatorname{rmin}\left\{V_{A}^{+}(\mathrm{x}), V_{A}^{+}(\mathrm{y})\right\}$
(iii) $V_{A}^{-}(\mathrm{x}-\mathrm{y}) \leq \operatorname{rmax}\left\{V_{A}^{-}(\mathrm{x}), V_{A}^{-}(\mathrm{y})\right\}$
(iv) $V_{A}^{-}(\mathrm{xy}) \leq \operatorname{rmax}\left\{V_{A}^{-}(\mathrm{x}), V_{A}^{-}(\mathrm{y})\right\}$ for all x and y in R .

Example 1.11. Let $R=Z_{3}=\{0,1,2\}$ be a ring with respect to the ordinary addition and multiplication. Then $\mathrm{A}=\{\langle 0,[0.5,0.7],[-0.8,-0.5]\rangle$, $<1,[0.4,0.6]$, $[-0.7,-0.4]>,<2,[0.4,0.6],[-0.7,-0.4]>\}$ is a BVVSR of R.

Definition 1.12. [5] Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$and $\mathrm{B}=\left\langle V_{B}^{+}, V_{B}^{-}\right\rangle$be any two bipolar valued vague subsets of sets G and H, respectively. The product of A and B, denoted by $A \times B$, is defined as $\mathrm{A} \times \mathrm{B}=\left\{\left\langle(\mathrm{x}, \mathrm{y}), V_{A \times B}^{+}(\mathrm{x}, \mathrm{y}), V_{A \times B}^{-}(\mathrm{x}, \mathrm{y})\right\rangle /\right.$ for all x in G and y in H$\}$ where $V_{A \times B}^{+}(\mathrm{x}, \mathrm{y})=\operatorname{rmin}\left\{V_{A}^{+}(\mathrm{x}), V_{B}^{+}(\mathrm{y})\right\}$ and $V_{A \times B}^{-}(\mathrm{x}, \mathrm{y})=\operatorname{rmax}\left\{V_{A}^{-}(\mathrm{x}), V_{B}^{-}(\mathrm{y})\right\}$ for all x in G and y in H .

Definition 1.13. [5] Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a bipolar valued vague subset in a set S , the strongest bipolar valued vague relation on S , that is a bipolar valued vague relation on A is $\mathrm{V}=\left\{\left\langle(\mathrm{x}, \mathrm{y}), V_{V}^{+}(\mathrm{x}, \mathrm{y}), V_{V}^{-}(\mathrm{x}, \mathrm{y})\right\rangle / \mathrm{x}\right.$ and y in S$\}$ given by $V_{V}^{+}(\mathrm{x}, \mathrm{y})=\operatorname{rmin}\left\{V_{A}^{+}(\mathrm{x}), V_{A}^{+}(\mathrm{y})\right\}$ and $V_{V}^{-}(\mathrm{x}, \mathrm{y})=\operatorname{rmax}\left\{V_{A}^{-}(\mathrm{x}), V_{A}^{-}(\mathrm{y})\right\}$ for all x and y in S .

Definition 1.14. [5] Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a bipolar valued vague subset of X . Then the height $\mathrm{H}(\mathrm{A})=\left\langle\mathrm{H}\left(V_{A}^{+}\right), \mathrm{H}\left(V_{A}^{-}\right)\right\rangle$is defined as $\mathrm{H}\left(V_{A}^{+}\right)=\operatorname{rsup} V_{A}^{+}(\mathrm{x})$ for all x in X and $\mathrm{H}\left(V_{A}^{-}\right)=\operatorname{rinf} V_{A}^{-}(\mathrm{x})$ for all x in X .

Definition 1.15. [5] Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a bipolar valued vague subset of X . Then ${ }^{\oplus} \mathrm{A}=\left\langle{ }^{\oplus} V_{A}^{+},{ }^{\oplus} V_{A}^{-}\right\rangle$is defined as ${ }^{\oplus} V_{A}^{+}(\mathrm{x})=V_{A}^{+}(\mathrm{x})+[1]-\mathrm{H}\left(V_{A}^{+}\right)$and ${ }^{\oplus} V_{A}^{-}(\mathrm{x})=V_{A}^{-}(\mathrm{x})-[1]$ $-\mathrm{H}\left(V_{A}^{-}\right)$for all x in X .

Definition 1.16. [6] Let R be a ring. A bipolar valued vague subring $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$of R is said to be a bipolar valued vague normal subring of R if $V_{A}^{+}(\mathrm{xy})=V_{A}^{+}(\mathrm{yx})$ and $V_{A}^{-}(\mathrm{xy})=V_{A}^{-}(\mathrm{yx})$ for all x and y in R .

2. Theorems.

Theorem 2.1. [5] Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a BVVSR of a ring R. Then $V_{A}^{+}(-\mathrm{x})=V_{A}^{+}(\mathrm{x})$, $V_{A}^{-}(-\mathrm{x})=V_{A}^{-}(\mathrm{x}), V_{A}^{+}(\mathrm{x}) \leq V_{A}^{+}(\mathrm{e}), V_{A}^{-}(\mathrm{x}) \geq V_{A}^{-}(\mathrm{e})$, for all x in R , where e is the identity element in R .

Theorem 2.2. Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a BVVNSR of a ring R. Then $V_{A}^{+}(-\mathrm{x})=V_{A}^{+}(\mathrm{x}), V_{A}^{-}(-\mathrm{x})$ $=V_{A}^{-}(\mathrm{x}), V_{A}^{+}(\mathrm{x}) \leq V_{A}^{+}(\mathrm{e}), V_{A}^{-}(\mathrm{x}) \geq V_{A}^{-}(\mathrm{e})$, for all x in R , where e is the identity element in R .

Proof. The proof follows from the theorem 2.2.
Theorem 2.3. [5] Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a BVVSR of a ring R. (i) If $V_{A}^{+}(x-y)=[0]$ then either $V_{A}^{+}(\mathrm{x})=[0]$ or $V_{A}^{+}(\mathrm{y})=[0]$ for x , y in R. (ii) If $V_{A}^{+}(\mathrm{xy})=[0]$ then either $V_{A}^{+}(\mathrm{x})=[0]$ or $V_{A}^{+}(\mathrm{y})=[0]$ for x , y in R. (iii) If $V_{A}^{-}(\mathrm{x}-\mathrm{y})=[0]$ then either $V_{A}^{-}(\mathrm{x})=[0]$ or $V_{A}^{-}(\mathrm{y})=[0]$ for x , y in R. (iv) If $V_{A}^{-}(\mathrm{xy})=[0]$ then either $V_{A}^{-}(\mathrm{x})=[0]$ or $V_{A}^{-}(\mathrm{y})=[0]$ for x, y in R.

Theorem 2.4. Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a BVVNSR of a ring R. (i) If $V_{A}^{+}(\mathrm{x}-\mathrm{y})=[0]$ then either $V_{A}^{+}(\mathrm{x})=[0]$ or $V_{A}^{+}(\mathrm{y})=[0]$ for x, y in R. (ii) If $V_{A}^{+}(\mathrm{xy})=[0]$ then either $V_{A}^{+}(\mathrm{x})=[0]$ or $V_{A}^{+}(\mathrm{y})=[0]$ for x, y in R. (iii) If $V_{A}^{-}(\mathrm{x}-\mathrm{y})=[0]$ then either $V_{A}^{-}(\mathrm{x})=[0]$ or $V_{A}^{-}(\mathrm{y})=[0]$ for x , y in R. (iv) If $V_{A}^{-}(\mathrm{xy})=[0]$ then either $V_{A}^{-}(\mathrm{x})=[0]$ or $V_{A}^{-}(\mathrm{y})=[0]$ for x, y in R.

Proof. The proof follows from the theorem 2.3.
Theorem 2.5. [5] If $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$is a BVVSR of a ring R , then $\mathrm{H}=\left\{\mathrm{x} \in \mathrm{R} / V_{A}^{+}(\mathrm{x})=[1]\right.$, $\left.V_{A}^{-}(\mathrm{x})=[-1]\right\}$ is either empty or a subring of R .

Theorem 2.6. If $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$is a BVVNSR of a ring R , then $\mathrm{H}=\left\{\mathrm{x} \in \mathrm{R} / V_{A}^{+}(\mathrm{x})=[1]\right.$, $\left.V_{A}^{-}(x)=[-1]\right\}$ is either empty or a subring of R.

Proof. The proof follows from the theorem 2.5.

Theorem 2.7. [5] If $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$and $\mathrm{B}=\left\langle V_{B}^{+}, V_{B}^{-}\right\rangle$are two BVVSRs of a ring R , then their intersection $\mathrm{A} \cap \mathrm{B}$ is a BVVSR of R .

Theorem 2.8. If $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$and $\mathrm{B}=\left\langle V_{B}^{+}, V_{B}^{-}\right\rangle$are two BVVNSRs of a ring R , then their intersection $A \cap B$ is a BVVNSR of R.

Proof. Let $\mathrm{C}=\mathrm{A} \cap \mathrm{B}$ and let x , y in R . By the theorem 2.7, $\mathrm{A} \cap \mathrm{B}$ is a BVVSR of R. Now $V_{C}^{+}(\mathrm{xy})=\operatorname{rmin}\left\{V_{A}^{+}(\mathrm{xy}), V_{B}^{+}(\mathrm{xy})\right\}=\operatorname{rmin}\left\{V_{A}^{+}(\mathrm{yx}), V_{B}^{+}(\mathrm{yx})\right\}=V_{C}^{+}(\mathrm{yx})$, for all x, y in R . And $V_{C}^{-}(\mathrm{xy})=\operatorname{rmax}\left\{V_{A}^{-}(\mathrm{xy}), V_{B}^{-}(\mathrm{xy})\right\}=\operatorname{rmax}\left\{V_{A}^{-}(\mathrm{yx}), V_{B}^{-}(\mathrm{yx})\right\}=V_{C}^{-}(\mathrm{yx})$, for all x, y in R. Hence $A \cap B$ is a BVVNSR of R.

Theorem 2.9. [5] The intersection of a family of BVVSRs of a ring R is a BVVSR of R.
Theorem 2.10. The intersection of a family of BVVNSRs of a ring R is a BVVNSR of R.
Proof. The proof follows from the Theorem 2.8 and 2.9.
Theorem 2.11. [5] If $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$and $\mathrm{B}=\left\langle V_{B}^{+}, V_{B}^{-}\right\rangle$are any two BVVSRs of the rings R_{1} and R_{2} respectively, then $\mathrm{A} \times \mathrm{B}=\left\langle V_{A \times B}^{+}, V_{A \times B}^{-}\right\rangle$is a BVVSR of $\mathrm{R}_{1} \times \mathrm{R}_{2}$.

Theorem 2.12. If $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$and $\mathrm{B}=\left\langle V_{B}^{+}, V_{B}^{-}\right\rangle$are any two BVVNSRs of the rings R_{1} and R_{2} respectively, then $\mathrm{A} \times \mathrm{B}=\left\langle V_{A \times B}^{+}, V_{A \times B}^{-}\right\rangle$is a BVVNSR of $\mathrm{R}_{1} \times \mathrm{R}_{2}$.

Proof. Let $\mathrm{x}_{1}, \mathrm{x}_{2}$ be in $\mathrm{R}_{1}, \mathrm{y}_{1}$ and y_{2} be in R_{2}. Then ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) are in $\mathrm{R}_{1} \times \mathrm{R}_{2}$. By the theorem 2.11, $\mathrm{A} \times \mathrm{B}=\left\langle V_{A \times B}^{+}, V_{A \times B}^{-}\right\rangle$is a BVVSR of $\mathrm{R}_{1} \times \mathrm{R}_{2}$. Now, $V_{A \times B}^{+}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right]$ $=V_{A \times B}^{+}\left(\mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{y}_{1} \mathrm{y}_{2}\right)=\operatorname{rmin}\left\{V_{A}^{+}\left(\mathrm{x}_{1} \mathrm{x}_{2}\right), V_{B}^{+}\left(\mathrm{y}_{1} \mathrm{y}_{2}\right)\right\}=\operatorname{rmin}\left\{V_{A}^{+}\left(\mathrm{x}_{2} \mathrm{x}_{1}\right), V_{B}^{+}\left(\mathrm{y}_{2} \mathrm{y}_{1}\right)\right\}=V_{A \times B}^{+}\left(\mathrm{x}_{2} \mathrm{x}_{1}\right.$, $\left.\mathrm{y}_{2} \mathrm{y}_{1}\right)=V_{A \times B}^{+}\left[\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right]$. And $V_{A \times B}^{-}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right]=V_{A \times B}^{-}\left(\mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{y}_{1} \mathrm{y}_{2}\right)=\operatorname{rmax}\left\{V_{A}^{-}\left(\mathrm{x}_{1} \mathrm{x}_{2}\right)\right.$, $\left.V_{B}^{-}\left(\mathrm{y}_{1} \mathrm{y}_{2}\right)\right\}=\operatorname{rmax}\left\{V_{A}^{-}\left(\mathrm{x}_{2} \mathrm{x}_{1}\right), V_{B}^{-}\left(\mathrm{y}_{2} \mathrm{y}_{1}\right)\right\}=V_{A \times B}^{-}\left(\mathrm{x}_{2} \mathrm{x}_{1}, \mathrm{y}_{2} \mathrm{y}_{1}\right)=V_{A \times B}^{-}\left[\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right]$. Hence $A \times B$ is a BVVNSR of $R_{1} \times R_{2}$.

Theorem 2.13. If $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle, \mathrm{B}=\left\langle V_{B}^{+}, V_{B}^{-}\right\rangle, \ldots \mathrm{K}=\left\langle V_{K}^{+}, V_{K}^{-}\right\rangle$are BVVSRs of the rings $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \ldots, \mathrm{R}_{\mathrm{K}}$ respectively, then $\mathrm{A} \times \mathrm{B} \times \ldots \times \mathrm{K}=\left\langle V_{A \times B \times . \times K}^{+}, V_{A \times B \times . \times K}^{-}\right\rangle$is a BVVSR of $\mathrm{R}_{\mathrm{A}} \times \mathrm{R}_{\mathrm{B}} \times \ldots \times \mathrm{R}_{\mathrm{K}}$.

Proof. The proof follows from the Theorem 2.11.
Theorem 2.14. If $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle, \mathrm{B}=\left\langle V_{B}^{+}, V_{B}^{-}\right\rangle, \ldots \mathrm{K}=\left\langle V_{K}^{+}, V_{K}^{-}\right\rangle$are BVVNSRs of the rings $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \ldots, \mathrm{R}_{\mathrm{K}}$ respectively, then $\mathrm{A} \times \mathrm{B} \times \ldots \times \mathrm{K}=\left\langle V_{A \times B \times \ldots \times K}^{+}, V_{A \times B \times . \times K}^{-}\right\rangle$is a BVVNSR of $\mathrm{R}_{\mathrm{A}} \times \mathrm{R}_{\mathrm{B}} \times \ldots \times \mathrm{R}_{\mathrm{K}}$.

Proof. Let $\left(a_{1}, b_{1}, \ldots, k_{1}\right)$ and ($\left.a_{2}, b_{2}, \ldots, k_{2}\right)$ are in $R_{A} \times R_{B} \times \ldots \times R_{K}$. By the theorem 2.13, $\mathrm{A} \times \mathrm{B} \times \ldots \times \mathrm{K}=\left\langle V_{A \times B \times . \times K}^{+}, V_{A \times B \times . . \times K}^{-}\right\rangle$is a BVVSR of $\mathrm{R}_{\mathrm{A}} \times \mathrm{R}_{\mathrm{B}} \times \ldots \times \mathrm{R}_{\mathrm{K}}$. Now, $V_{A \times B \times . \times K}^{+}\left[\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right.\right.$, $\left.\left.\ldots, \mathrm{k}_{1}\right)\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \ldots, \mathrm{k}_{2}\right)\right]=V_{A \times B \times . . \times K}^{+}\left(\mathrm{a}_{1} \mathrm{a}_{2}, \mathrm{~b}_{1} \mathrm{~b}_{2}, \ldots, \mathrm{k}_{1} \mathrm{k}_{2}\right)=\operatorname{rmin}\left\{V_{A}^{+}\left(\mathrm{a}_{1} \mathrm{a}_{2}\right), V_{B}^{+}\left(\mathrm{b}_{1} \mathrm{~b}_{2}\right)\right.$,
$\left.\ldots, V_{K}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right)\right\}=\operatorname{rmin}\left\{V_{A}^{+}\left(\mathrm{a}_{2} \mathrm{a}_{1}\right), V_{B}^{+}\left(\mathrm{b}_{2} \mathrm{~b}_{1}\right), \ldots, V_{K}^{+}\left(\mathrm{k}_{2} \mathrm{k}_{1}\right)\right\}=V_{A \times B \times . \times K}^{+}\left(\mathrm{a}_{2} \mathrm{a}_{1}, \mathrm{~b}_{2} \mathrm{~b}_{1}, \ldots, \mathrm{k}_{2} \mathrm{k}_{1}\right)$
$=V_{A \times B \times . \times K}^{+}\left[\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \ldots, \mathrm{k}_{2}\right)\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \ldots, \mathrm{k}_{1}\right)\right]$. And $V_{A \times B \times . \times K}^{-}\left[\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \ldots, \mathrm{k}_{1}\right)\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \ldots, \mathrm{k}_{2}\right)\right]$
$=V_{A \times B \times . \times K}^{-}\left(\mathrm{a}_{1} \mathrm{a}_{2}, \mathrm{~b}_{1} \mathrm{~b}_{2}, \ldots, \mathrm{k}_{1} \mathrm{k}_{2}\right)=\operatorname{rmax}\left\{V_{A}^{-}\left(\mathrm{a}_{1} \mathrm{a}_{2}\right), V_{B}^{-}\left(\mathrm{b}_{1} \mathrm{~b}_{2}\right), \ldots, V_{K}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right)\right\}=\operatorname{rmax}$ $\left\{V_{A}^{-}\left(\mathrm{a}_{2} \mathrm{a}_{1}\right), V_{B}^{-}\left(\mathrm{b}_{2} \mathrm{~b}_{1}\right), \ldots, V_{K}^{-}\left(\mathrm{k}_{2} \mathrm{k}_{1}\right)\right\}=V_{A \times B \times . \times K}^{-}\left(\mathrm{a}_{2} \mathrm{a}_{1}, \mathrm{~b}_{2} \mathrm{~b}_{1}, \ldots, \mathrm{k}_{2} \mathrm{k}_{1}\right)=V_{A \times B \times . \times K}^{-}\left[\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \ldots\right.\right.$, $\left.\left.k_{2}\right)\left(a_{1}, b_{1}, \ldots, k_{1}\right)\right]$. Hence $A \times B \times \ldots \times K$ is a BVVNSR of $R_{A} \times R_{B} \times \ldots \times R_{K}$.

Theorem 2.15. [5] The product of a family of BVVSRs of rings R_{i} is a BVVSR of $\mathrm{R}_{1} \times \mathrm{R}_{2} \times \ldots$.

Theorem 2.16. The product of a family of BVVNSRs of rings R_{i} is a BVVNSR of $\mathrm{R}_{1} \times \mathrm{R}_{2} \times \ldots$.

Proof. The proof follows from the Theorem 2.14 and 2.15.
Theorem 2.17. [5] Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a BVVSS of a ring R and $\mathrm{V}=\left\langle V_{V}^{+}, V_{V}^{-}\right\rangle$be the strongest bipolar valued vague relation of R. Then A is a BVVSR of R if and only if V is a BVVSR of $\mathrm{R} \times \mathrm{R}$.

Theorem 2.18. Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a BVVSS of a ring R and $\mathrm{V}=\left\langle V_{V}^{+}, V_{V}^{-}\right\rangle$be the strongest bipolar valued vague relation of R . Then A is a BVVNSR of R if and only if V is a BVVNSR of $R \times R$.

Proof. Suppose that A is a BVVNSR of R. Then for any $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ are in $R \times R$. By the theorem 2.17, A is a BVVSR of R if and only if V is a BVVSR of $\mathrm{R} \times \mathrm{R}$. Now V_{V}^{+}(xy) $=V_{V}^{+}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=V_{V}^{+}\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right)=\operatorname{rmin}\left\{V_{A}^{+}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right), V_{A}^{+}\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)\right\}=\operatorname{rmin}\left\{V_{A}^{+}\left(\mathrm{y}_{1} \mathrm{x}_{1}\right)\right.$, $\left.V_{A}^{+}\left(\mathrm{y}_{2} \mathrm{x}_{2}\right)\right\}=V_{V}^{+}\left(\mathrm{y}_{1} \mathrm{x}_{1}, \mathrm{y}_{2} \mathrm{x}_{2}\right)=V_{V}^{+}\left[\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right]=V_{V}^{+}\left(\mathrm{yx}^{2}\right)$, for all x and y in $\mathrm{R} \times \mathrm{R}$. And $V_{V}^{-}\left(\mathrm{xy}^{2}\right)=V_{V}^{-}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=V_{V}^{-}\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right)=\operatorname{rmax}\left\{V_{A}^{-}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right), V_{A}^{-}\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)\right\}=\operatorname{rmax}$ $\left\{V_{A}^{-}\left(\mathrm{y}_{1} \mathrm{x}_{1}\right), V_{A}^{-}\left(\mathrm{y}_{2} \mathrm{x}_{2}\right)\right\}=V_{V}^{-}\left(\mathrm{y}_{1} \mathrm{x}_{1}, \mathrm{y}_{2} \mathrm{x}_{2}\right)=V_{V}^{-}\left[\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right]=V_{V}^{-}(\mathrm{yx})$ for all x , y in $\mathrm{R} \times \mathrm{R}$. This proves that V is a BVVNSR of $R \times R$. Conversely assume that V is a BVVNSR of $R \times R$, then for any $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ are in $\mathrm{R} \times \mathrm{R}$, we have $\mathrm{rmin}\left\{V_{A}^{+}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right), V_{A}^{+}\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)\right\}=$ $V_{V}^{+}\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right)=V_{V}^{+}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=V_{V}^{+}(\mathrm{xy})=V_{V}^{+}\left(\mathrm{yx}^{2}\right)=V_{V}^{+}\left[\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right]=V_{V}^{+}\left(\mathrm{y}_{1} \mathrm{x}_{1}\right.$, $\left.\mathrm{y}_{2} \mathrm{x}_{2}\right)=\operatorname{rmin}\left\{V_{A}^{+}\left(\mathrm{y}_{1} \mathrm{x}_{1}\right), V_{A}^{+}\left(\mathrm{y}_{2} \mathrm{x}_{2}\right)\right\}$, if $\mathrm{x}_{2}=\mathrm{y}_{2}=\mathrm{e}$, we get $V_{A}^{+}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right)=V_{A}^{+}\left(\mathrm{y}_{1} \mathrm{x}_{1}\right)$, for all x_{1} and y_{1} in R. Also we have $\operatorname{rmax}\left\{V_{A}^{-}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right), V_{A}^{-}\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)\right\}=V_{V}^{-}\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right)=V_{V}^{-}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]$ $=V_{V}^{-}(\mathrm{xy})=V_{V}^{-}\left(\mathrm{yxx}^{2}\right)=V_{V}^{-}\left[\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right]=V_{V}^{-}\left(\mathrm{y}_{1} \mathrm{x}_{1}, \mathrm{y}_{2} \mathrm{x}_{2}\right)=\operatorname{rmax}\left\{V_{A}^{-}\left(\mathrm{y}_{1} \mathrm{x}_{1}\right), V_{A}^{-}\left(\mathrm{y}_{2} \mathrm{x}_{2}\right)\right\}$, if $\mathrm{x}_{2}=\mathrm{y}_{2}=\mathrm{e}$, we get $V_{A}^{-}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right)=V_{A}^{-}\left(\mathrm{y}_{1} \mathrm{x}_{1}\right)$, for all x_{1} and y_{1} in R. Hence A is a BVVNSR of R.

Theorem 2.19. [5] If A $=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$is a BVVSR of a ring R , then ${ }^{\oplus} \mathrm{A}=\left\langle{ }^{\oplus} V_{A}^{+},{ }^{\oplus} V_{A}^{-}\right\rangle$is a BVVSR of the ring R.
Theorem 2.20. If $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$is a BVVNSR of a ring R , then ${ }^{\oplus} \mathrm{A}=\left\langle{ }^{\oplus} V_{A}^{+},{ }^{\oplus} V_{A}^{-}\right\rangle$is a BVVNSR of the ring R.

Proof. Let x and y in R. By the theorem 2.19, ${ }^{\oplus} \mathrm{A}=\left\langle{ }^{\oplus} V_{A}^{+},{ }^{\oplus} V_{A}^{-}\right\rangle$is a BVVSR of the ring R.
Now ${ }^{\oplus} V_{A}^{+}(\mathrm{xy})=V_{A}^{+}(\mathrm{xy})+[1]-\mathrm{H}\left(V_{A}^{+}\right)=V_{A}^{+}(\mathrm{yx})+[1]-\mathrm{H}\left(V_{A}^{+}\right)={ }^{\oplus} V_{A}^{+}(\mathrm{yx})$, for all x , y in R. And ${ }^{\oplus} V_{A}^{-}(\mathrm{xy})=V_{A}^{-}(\mathrm{xy})-[1]-\mathrm{H}\left(V_{A}^{-}\right)=V_{A}^{-}(\mathrm{yx})-[1]-\mathrm{H}\left(V_{A}^{-}\right)={ }^{\oplus} V_{A}^{-}(\mathrm{yx})$ for all x , y in R. Hence ${ }^{\oplus}$ A is a BVVNSR of R.

Theorem 2.21. [5] Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a BVVSR of a ring R. Then (i) $\mathrm{H}\left(V_{A}^{+}\right)=[1]$ if and only if ${ }^{\oplus} V_{A}^{+}(\mathrm{x})=V_{A}^{+}(\mathrm{x})$ for all x in R
(ii) $\mathrm{H}\left(V_{A}^{-}\right)=[-1]$ if and only if ${ }^{\oplus} V_{A}^{-}(\mathrm{x})=V_{A}^{-}(\mathrm{x})$ for all x in R .
(iii) ${ }^{\oplus} V_{A}^{+}(\mathrm{x})=[1]$ if and only if $\mathrm{H}\left(V_{A}^{+}\right)=V_{A}^{+}(\mathrm{x})$ for all x in R
(iv) ${ }^{\oplus} V_{A}^{-}(\mathrm{x})=[-1]$ if and only if $\mathrm{H}\left(V_{A}^{-}\right)=V_{A}^{-}(\mathrm{x})$ for all x in R .
$(\mathrm{v}){ }^{\oplus}\left({ }^{\oplus} \mathrm{A}\right)={ }^{\oplus} \mathrm{A}$.
Theorem 2.22. Let $\mathrm{A}=\left\langle V_{A}^{+}, V_{A}^{-}\right\rangle$be a BVVNSR of a ring R. Then (i) $\mathrm{H}\left(V_{A}^{+}\right)=[1]$ if and only if ${ }^{\oplus} V_{A}^{+}(\mathrm{x})=V_{A}^{+}(\mathrm{x})$ for all x in R
(ii) $\mathrm{H}\left(V_{A}^{-}\right)=[-1]$ if and only if ${ }^{\oplus} V_{A}^{-}(\mathrm{x})=V_{A}^{-}(\mathrm{x})$ for all x in R .
(iii) ${ }^{\oplus} V_{A}^{+}(\mathrm{x})=[1]$ if and only if $\mathrm{H}\left(V_{A}^{+}\right)=V_{A}^{+}(\mathrm{x})$ for all x in R
(iv) ${ }^{\oplus} V_{A}^{-}(\mathrm{x})=[-1]$ if and only if $\mathrm{H}\left(V_{A}^{-}\right)=V_{A}^{-}(\mathrm{x})$ for all x in R .
$(\mathrm{v}){ }^{\oplus}\left({ }^{\oplus} \mathrm{A}\right)={ }^{\oplus} \mathrm{A}$.
Proof.The proof follows from the theorem 2.21.

References.

1. Anitha.M.S., Muruganantha Prasad \& K.Arjunan, Notes on bipolar valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, Vol. 2 No. 3 (2013), pp. 52-59.
2. Azriel Rosenfeld, fuzzy groups, Journal of mathematical analysis and applications 35(1971), 512-517.
3. Balasubramanian.A, K.L.Muruganantha Prasad \& K.Arjunan, "Properties of Bipolar interval valued fuzzy subgroups of a group", International Journal of Scientific Research, Vol. 4, Iss. 4 (2015), 262-268.
4. Cicily Flora. S and Arockiarani.I, A new class of generalized bipolar vague sets, International Journal of Information Research and review, 3(11), (2016), 3058-3065.
5. Deeba.B, S.Naganathan \& K.Arjunan, " A study on bipolar valued vague subrings of a ring", Journal of Shanghai Jiaotong University, Vol. 16, Issue 10 (2020), 512 -518.
6. Rabanal, N., \& Dhabliya, D. (2022). Designing Architecture of Embedded System Design using HDL Method. Acta Energetica, (02), 52-58.
7. Juneja, V., Singh, S., Jain, V., Pandey, K. K., Dhabliya, D., Gupta, A., \& Pandey, D. (2023). Optimization-Based Data Science for an IoT Service Applicable in Smart Cities. In Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities (pp. 300-321). IGI Global.
8. Pandey, J. K., Veeraiah, V., Talukdar, S. B., Talukdar, V. B., Rathod, V. M., \& Dhabliya, D. (2023). Smart City Approaches Using Machine Learning and the IoT. In

Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities (pp. 345-362). IGI Global.
9. Deepa.B, S.Naganathan \& K.Arjunan, "Homomorphism and anti homomorphism functions in Bipolar valued vague subrngs of a ring" International Journal of Mathematical Archive, 12(7), (2021), 1-5.
10. Gau W.L and Buehrer D.J, Vague sets, IEEE Transactions on systems, Man and Cybernetics, 23(1993), 610-614.
11. Grattan-Guiness, "Fuzzy membership mapped onto interval and many valued quantities", Z.Math.Logik. Grundladen Math. 22 (1975), 149 - 160.
12. K.M.Lee, bipolar valued fuzzy sets and their operations. Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand (2000), 307-312.
13. K.M.Lee, Comparison of interval valued fuzzy sets, intuitionistic fuzzy sets and bipolar valued fuzzy sets. J. fuzzy Logic Intelligent Systems, 14 (2) (2004), 125-129.
14. K.Murugalingam \& K.Arjunan, A study on interval valued fuzzy subsemiring of a semiring, International Journal of Applied Mathematics Modeling, Vol.1, No.5, 1-6, (2013).
15. RanjitBiswas, Vague groups, International Journal of Computational Coginition, 4(2), (2006), $20-23$.
16. Somasundra Moorthy.M.G., "A study on interval valued fuzzy, anti fuzzy, intuitionistic fuzzy subrings of a ring", Ph.D Thesis, Bharathidasan University, Trichy, Tamilnadu, India (2014).
17. Yasodara.B and KE.Sathappan, "Bipolar-valued multi fuzzy subsemirings of a semiring", International Journal of Mathematical Archive, 6(9) (2015), 75 - 80.
18. L.A.Zadeh, fuzzy sets, Inform. And Control, 8(1965), 338-353.

