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Abstract 

Recently we introduced μĝπ -closed set in Micro topological spaces. The 

aim of this paper is to introduce a new class of Micro continuous function 

called  μĝπ -continuous function in Micro topological spaces and also 

discussedtheir properties. 
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1 Introduction 

The concept of rough set theory was studied by Pawlak [7] and he introduced the idea of 

lower approximation, upper approximation and boundary region of a subset of the universe. 

Carmel Richard and et al. [6] presented the concept  of Nano topology in this year 2013. The 

Micro topology was introduced by Sakkraiveeranan  Chandrasekar [8] and he also studied the 

concepts of Micro pre open and Micro semi-open sets. Ibrahim [4,5] introduced Micro -open 

sets and Micro -closed sets in Micro topological spaces. Recently Anandhi and Balamani [1] 

initiated the concept of Micro -generalized closed sets in Micro topological spaces and also 

they have studied the properties of Micro separation axioms related to Micro -generalized 

closed sets in Micro topological spaces. 

In this paper we introduce a new class of function called μĝπ –continuous function and study 

some of their properties. 

2. Preliminaries 

In this paper, (Ω, 𝓝, 𝓜)  denote the Micro topological spaces, where = τR(X) , ℳ = μR(X)  

and MTS denote micro and micro topological space respectively. For a subset P of a space , 

clμ(P) and intμ(P)  denote  the closure of P and the interior of P respectively. 

Definition 2.1.[8] Let (U, τR(X))  be a Nano topological space. Then μR(X) = {N ∪

(N′ ∩ μ): N, N′ ∈ τR(X)}  and μ ≠ τR(X) and  μR(X) is called the Micro topology on U with 

respect to X. The triplet (U, τR(X), μR(X))  is  Micro topological space and  Micro open sets 
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termed as the elements of μR(X)  and  Micro closed set termed as complement of a Micro 

open set. 

Definition 2.2. Let  Micro topological space (Ω, 𝓝, 𝓜). A subset of A is  

i. Micro-g-closed,  if   clμ(A)  ⊆ L , A ⊆ L and L is Micro- open in U.[5] 

ii. Micro-αg-closed, if αclμ(A)  ⊆ L , A ⊆  L and L is Micro- open in U.[3] 

iii. Micro-gα-closed, if  αclμ(A)  ⊆  L , A ⊆ L and L is Micro- α- open in U.[3] 

iv. Micro-sg-closed, if  sclμ(A)  ⊆  L , A ⊆ L and L is Micro- s- open in U.[2] 

v. icro-gs-closed,  if sclμ(A)  ⊆  L , A ⊆ L and L is Micro-open in    U.[2] 

vi. Micro-g∗-closed, if  clμ(A)  ⊆ L , A ⊆ L and L is Micro- g-open in U.[9] 

Definition 2.3.[10] Let (X, τR(A), μR(A)) and (Y, τ′R (A), μ′R(A)) be two Micro topological 

spaces.  A function f ∶  X →  Y is called Micro-generalized continuous function if f −1(B) is 

Micro g-closed set in X for every Micro-closed set B in Y. 

3 Micro μĝπ -continuous 

Definition 3.1. Let (Ω, N, M) and (Ψ, N′, M′) be two MTS’s . Then a mapping f ∶  Ω →  Ψ is 

μĝπ  -continuous if the inverse image of every Micro closed set in Ψ is closed in  Ω. 

Example 3.2. Let Ω =  {p1, p2, p3, p4} with /R =  {{p1}, {p3}, {p2p4}} . Let X =  {p1, p2}  ⊆

 Ω , then τR(X)  =  {U, φ, {p1}, {p1, p2, p4}, {p2, p4}} . If  = {p3} , then the micro topology 

μR(X)  =  {Ω, φ, {p1}, {p3}, {p1, p3}, {p2, p4}, {p2, p3, p4}, {p1, p2, p4} . Let Ψ =

{q1, q2, q3, q4} with Ψ/R =  {{q1}, {q3}, {q2q4}} . Let  X′ =  {q1, q2}  ⊆  Ψ , then τ′R(X)  =

 {Ψ, φ, {q1}, {q1, q2, q4}, {q2, q4}} . If μ′ =  {q3} , then  μ′R(X)  =

 {Ω, φ, {q1}, {q3}, {q1, q3}, {q2, q4}, {q2, q3, q4}, {q1, q2, q4}. Let f ∶  Ω →  Ψ  be a function 

define as: f(p1)  = q1, f(p2)  =  q2 , f(p3)  =  q3 , f(p4)  =  q4  is μĝπ -continuous. 

Theorem 3.3. Every Micro- π -continuous is μĝπ -continuous but not conversely. 

Proof. Let f ∶  Ω →  Ψ is Micro- π -continuous. let V be Micro-closed in Ψ. Then f −1(V ) is 

Micro- π -closed in Ω and therefore f −1(V )  is  μĝπ -closed in Ω. Hence f is μĝπ -continuous. 

Example 3.4. In Example 3.2, Let f ∶  Ω →  Ψ  be a function define as: f(p1)  = q1, f(p2)  =

 q2 , f(p3)  =  q3 , f(p4)  =  q4  is μĝπ –continuous  not Micro π- continuous because 

f −1{q1, q3, q4}  =  {p1, p3, p4} not in Ω . 

Theorem 3.5. Every μĝπ -continuous is Micro- g -continuous but not conversely. 

Proof. Let f ∶  Ω →  Ψ is μĝπ-continuous. let V be closed in Ψ . Then f −1(V ) is μĝπ -closed 

in Ω and therefore f −1(V ) is Micro- g -closed in Ω.  Hence f is Micro- g -continuous. 

Example 3.6.  In Example 3.2, Let f ∶  Ω →  Ψ  be a function define as: f(p1)  = q1, f(p2)  =

 q2 , f(p3)  = q3 , f(p4)  =  q4  is Micro-g-continuous not μĝπ –continuous  because 

f −1{q1, q2}  =  {p1, p2} not in Ω . 
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Theorem 3.7. : A function f ∶  Ω →  Ψ  is μĝπ –continuous if and only if the inverse image of 

every Micro-closed set in Ψ is μĝπ -closed in  Ω. 

Proof. Suppose that the function f ∶  Ω →  Ψ is μĝπ -continuous. Let Q be a Micro-closed set 

in Ψ. Then the complement Ψ −  Q is Micro open set in Ψ. Since f is μĝπ -continuous, 

f −1(Ψ − Q) is μĝπ -open set in Ω. But f −1(Ψ −  Q)  =  Ψ −  f −1(Q) is μĝπ -open set in Ω. 

So f −1(Q) is μĝπ -closed in  Ω. 

Conversely, assume that the inverse image of every Micro closed set in Ψ is μĝπ -closed in 

Ω. Consider a Micro open set P in Ψ. Then Ψ −  P is Micro closed set in Ψ. By hypothesis 

f −1(Ψ −  P) is μĝπ -closed in Ω. But f −1(Ψ −  P)  =  Ψ −  f −1(P) is μĝπ -closed in Ω. 

Therefore f −1(P) is μĝπ -open in  Ω. Hence f is μĝπ-continuous function. 

Theorem 3.8. Let (Ω, N, M), (Ψ, N′, M′)and (Υ, N′′, M′′) be three MTS. If f ∶  Ω →  Ψ is a μĝπ 

-continuous function and g ∶  Ψ →  Υ  be a Micro continuous function then g ◦  f ∶  Ω →  Υ 

is μĝπ -continuous function. 

Proof. Let Q be a Micro closed set in Υ. Since by g is Micro continuous function, then g−1(Q) 

is Micro closed set in  Ψ. Since  f is μĝπ -continuous function,  then f −1(g−1(Q)) is μĝπ -

closed set in Ω but (g ◦ f)−1(Q)  =  (f −1  ◦ g−1(Q)  = f −1(g−1(Q)) . Thus (g ◦  f)−1(Q)  

is μĝπ closed set in Ω. Hence g ◦  f is μĝπ continuous function. 

Theorem 3.9. Let f ∶  Ω →  Ψ be a μĝπ -continuous function, then for every subset P of Ω, 

f(μĝπ cl(P))  ⊆ cl(f(P)). 

Proof. Let f ∶  Ω →  Ψ be a μĝπ -continuous function and P be any subset of  Ω. Then 

clμ(f(P)) is a Micro closed set in Ψ. Since f is μĝπ -continuous, f −1(clμ(f(P))) is μĝπ -

closed in Ω . Since f(P)  ⊆ clμ(f(P)), then P ⊆ f −1(clμ(f(P))) . Therefore, f −1(clμ(f(P))) is 

Micro closed set containing P. By the definition of μĝπ -closure, μĝπ clμ(P)  ⊆

f −1(clμ(f(P))) which implies that  f(μĝπclμ(P))  ⊆  clμ(f(P)) . 

Definition 3.10. Let ( Ω, N, M) and  (Ψ, N′, M′) be two Micro-topologicalspaces. A 

function f ∶  Ω →  Ψ is called μĝπ -continuous at a point p ∈ Ω if for every Micro open set K 

containing f(p) in Ψ , there exist a μĝπ -open set L containing p in Ψ, such that f(K)  ⊆ L . 

Theorem 3.11. f ∶  Ω →  Ψ is μĝπ -continuous iff f is μĝπ continuous at each point of Ω . 

Proof. Let f ∶  Ω →  Ψ  be μĝπ continuous, a ∈  Ω  and H be a Micro open set in Ω 

containing f(a). Since f is Micro-continuous, f −1(H) is Micro open in Ω containing a. Let  =

 f −1(H) , then f(G)  ⊆ H  and f(a)  ⊆ G.  Hence f is continuous at a.  

conversely, suppose that f is micro- continuous at each point of H . let H be a Micro -open in 

Ω , if f −1(H)  =  φ then it is Micro-open. So let f −1(H) ≠  φ . Take any a ∈ f −1(H), then 

f(a)  ⊆ H.  Since f is Micro-continuous at each point, then there exist a Micro-open set Ga 

containing a such that f(Ga)  ⊆  H , let G =  (Ga ∶  a ∈  f −1(H)) . Claim : G =  f −1(H) if  

x ∈ f −1(H) then x ∈  Gx  ⊆  G.  hence G =  f −1(H) . Since Gx is Micro-open, by definition 
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3.10.,  G is micro open and hence G =  f −1(H) is micro-open for every Micro-open set H in 

Ω. Hence f is Micro-continuous. 

4 Micro- 𝛍𝐠̂𝛑 irresolute function 

Definition 4.1. Let (Ω, N, M) and (Ψ, N′, M′) be two MTS’s. Then  mapping f ∶  Ω →  Ψ  is  

μĝπ - irresolute if the inverse image of every μĝπ-closed set in Ψ is μĝπ-closed in  Ω. 

Example 4.2. Let Ω =  {p1, p2, p3, p4} with /R =  {{p1}, {p2}, {p3p4}} . Let X =  {p1, p3}  ⊆

 Ω , then τR(X)  =  {U, φ, {p1}, {p1, p3, p4}, {p3, p4}} . If  = {p2} , then the micro topology 

μR(X)  =  {Ω, φ, {p1}, {p2}, {p1, p2}, {p3, p4}, {p2, p3, p4}, {p1, p3, p4} . Let Ψ =

{q1, q2, q3, q4} with Ψ/R =  {{q1}, {q3}, {q2q4}} . Let  X′ =  {q1, q3}  ⊆  Ψ , then τ′R(X)  =

 {Ψ, φ, {q1}, {q1, q3, q4}, {q3, q4}} . If μ′ =  {q2} , then  μ′R(X)  =

 {Ω, φ, {q1}, {q2}, {q1, q2}, {q3, q4}, {q2, q3, q4}, {q1, q3, q4}. Let f ∶  Ω →  Ψ  be a function 

define as: f(p1)  = q1, f(p2)  =  q2 , f(p3)  =  q3 , f(p4)  =  q4  is μĝπ –irresolute function. 

Theorem 4.3. Let f ∶  Ω →  Ψ and g ∶  Ψ →  Θ be two μĝπ –irresolute functions. Then their 

composition g ◦ f ∶  Ω →  Θ is a μĝπ -irresolute function. 

Proof. Follows from the definitions. 

Theorem 4.4. Let f ∶  Ω →  Ψ be a μĝπ -irresolute function and g ∶  Ψ →  Θ be a μĝπ -

continuous function. Then their composition g ◦ f : Ω → Θ is a μĝπ -continuous function. 

Proof. Let V be any closed set in Θ. Since g is μĝπ -continuous, g−1(V ) is μĝπ -closed in Ψ. 

Since f is μĝπ -irresolute, f −1(g−1(V ))  =  (g ◦  f)−1(V ) is μĝπ -closed in Ω.  Hence g ◦

 f ∶  Ω →  Θ is a μĝπ -continuous function. 

Theorem 4.5. If f ∶  Ω →  Ψ is bijective, Micro open and μĝπ-continuous, then f is μĝπ - 

irresolute. 

Proof. Let P be a μĝπ -closed set in  Ψ. Let f −1(P)  ⊆  G , where G is Micro open in Ω . 

Therefore, P ⊆  f(G) holds.  Since f(G) is Micro open and P is μĝπ -closed in Ψ, then P̅ ⊆

f(G).  Hence f −1(P̅) ⊆ G. Since f is μĝπ –continuous and P̅ is Micro closed in Ψ, f −1(P̅)̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆

G. That is., μĝπ -closed in Ω.  Hence f is μĝπ -irresolute. 
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