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Abstract— This paper presents a self-teaching algorithm for learning 

optical flow with non-occlusion and full-image wrapping from geometry. 

The proposed algorithm uses a monocular camera in order to learn the 

optimal state-of-the-art optical flow. It is based on a novel approach which 

uses the camera calibration parameters to directly optimize the flow. In 

this way, the algorithm is able to learn the full image-space motion from a 

single image pair. The proposed approach is evaluated on several datasets 

and is shown to be competitive with state-of-the-art supervised learning 

methods. The main benefits of the proposed approach is that it does not 

require large datasets for training and is able to leverage the natural 

geometric constraints of the scene to obtain the best possible results. The 

proposed algorithm is also able to produce more spatially consistent 

optical flow than existing deep learning approaches. 

Keywords— Computer vision, deep learning, optical flow estimation, 

unsupervised learning, occlusion. 

 

1. INTRODUCTION 

The objective of this project is to build a self-teaching algorithm that can accurately learn 

optical flow via unsupervised learning from geometry. Optical flow is a method used to 

estimate motion in an image by examining the patterns of pixel intensity. This project aims to 

develop a self-teaching algorithm that can accurately learn optical flow even when there is 

non-occlusion and full-image wrapping. 

To accomplish this, we use geometry to develop an understanding of the motion in a given 

image. We utilize various geometric techniques to determine the relationships between pixels 

and apply them to optical flow estimation. We combine these techniques with a machine 

learning algorithm to predict the motion of pixels given a set of training data. Finally, we 

evaluate our proposed method against other state-of-the-art optical flow estimation techniques 

and demonstrate the effectiveness of our proposed approach.However, there are seldom 

studies on the constraints of optical flow on non-occlusion regions. The smoothness loss is for 

all optical flow in an image. The reconstruction loss utilizes the luminosity constraint, not 

considering the geometry of the optical flow[8]. This study discovered several geometrical 
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principles that govern optical flow in non-occlusion zones. This research is the first to 

examine the non-occlusion restrictions of unsupervised optical flow learning, to the best of our 

knowledge. In this work, we reveal new geometric laws of the optical flow in non-occlusion 

regions and design two new unsupervised losses for the unsupervised learning of optical flow. 

Our contributions are as follows:  

• By carefully analyzing the motion of each pixel in real 3D space and 2D projected image, 

non-occlusion is defined in the 2D image in detail. New geometric laws of optical flow in the 

non-occlusion regions are revealed. 

• Based on the insight into the geometric laws of optical flow in the non-occlusion regions, 

two novel loss functions, the optical flow non-intersection loss and The unsupervised learning 

of optical flow is proposed using the optical flow non-blocking loss. [9]. The non-intersection 

loss defines that optical flows should not cross each other in non-occlusion regions. The non-

blocking loss states that during the pixel mobility between adjacent frames, a pixel should not 

be surrounded by other close pixels[10]. 

2. LITERATURE SURVEY 

Z. Min, Y. Yang, and E. Dunn, “Voldor: Visual odometry from loglogistic dense optical flow 

residuals" suggests a dense indirect visual odometry method that uses optical flow fields that 

have been externally estimated as input rather than feature correspondences that have been 

manually created. We formulate a generalized-EM framework for the joint inference of 

camera motion, pixel depth, and motion-track confidence, and define our problem as a 

probabilistic model. We manage our inference framework under a (empirically validated) 

adaptive log-logistic distribution model, in contrast to conventional approaches that assume 

Gaussian-distributed observation errors. Moreover, the log-logistic residual model generalises 

well to several cutting-edge optical flow techniques, making our methodology flexible and 

independent of the optical flow estimators used. For the TUM RGB-D and KITTI odometry 

benchmarks, our technique produced results that were among the best. Our publicly available 

implementation 1, which uses simply linear computation and storage growth. [1]. 

R. Ke, Z. Li, J. Tang, Z. Pan, and Y. Wang, The availability of unmanned aerial vehicles 

(UAV) creates new possibilities for smart transportation applications. "Real-time traffic flow 

parameter estimation from UAV footage based on ensemble classifier and optical flow", such 

as automatic traffic data collection. In such a trend, detecting vehicles and extracting traffic 

parameters from UAV video in a fast and accurate manner is becoming crucial in many 

prospective applications. However, from the methodological perspective, several limitations 

have to be addressed before the actual implementation of UAV. The analysis approach for 

estimating traffic flow parameters from UAV footage is unique and comprehensive in this 

paper's proposal. By designing and combining four steps, this system solves the widely 

discussed challenges of UAVs' erratic ego-motion, low estimation accuracy in situations of 

congested traffic, and high computing complexity. A vehicle detection ensemble classifier 

(Haar cascade + convolutional neural network) is created in the first two stages, and a robust 

traffic flow parameter estimation approach based on optical flow and traffic flow theory is 
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established in the latter two stages. The proposed ensemble classifier is demonstrated to 

outperform the state-of-the-art vehicle detectors that designed for UAV-based vehicle 

detection. The evaluation of traffic flow parameter estimates in both free-flow and congested 

traffic scenarios yields highly positive findings [2]. 

M. Menze, C. Heipke, and A. Geiger, “Object scene flow”, explores the estimation of scene 

flow, a term used to describe dense three-dimensional motion fields. Despite significant 

advancements in recent years, reconstruction and motion estimation techniques still face 

significant difficulties when dealing with high displacements and unfavourable imaging 

conditions as those found in outdoor, natural settings. In this study, we offer a unified random 

field model that explains the placement, form, and motion of vehicles in the observed image as 

well as the flow of a 3D scene. The job of breaking down the picture into a handful of firmly 

moving objects that share the same motion parameters is how we frame the issue. As a result, 

our formulation successfully creates long-range spatial dependencies, which are lacking in 

commonly used local stiffness priors. The relationship between image segments and object 

hypotheses is then estimated, together with the objects' three-dimensional velocity and shape. 

By proposing a fresh, difficult scene flow benchmark that enables a full comparison of the 

proposed scene flow approach with regard to multiple baseline models, we show the potential 

of the suggested approach. Our evaluation, in contrast to earlier standards, is the first to offer 

stereo and optical flow ground truth for dynamic, large-scale urban settings. Our tests show 

that rigid motion segmentation can be used as a powerful regularizer for the scene flow issue, 

outperforming the two-frame scene flow techniques now in use. At the same time, our method 

yields plausible object segmentations without requiring an explicitly trained recognition model 

for a specific object class [3]. 

C. Jiang, D. P. Paudel, D. Fofi, Y. Fougerolle, and C. Demonceaux, “Moving object detection 

by 3d flow field analysis”, Map-based localization and sensing are one of the key components 

in autonomous driving technologies, where high quality 3D map reconstruction is 

fundamentally utmost important. Yet, because of the extremely dynamic and unpredictable 

nature of the real-world environment, creating a high-quality 3D map is not simple and 

necessitates a number of firm assumptions. To address this challenge, we present a complete 

framework, which detects and extracts the moving objects from a sequence of unordered and 

texture-less point clouds, to build high quality static maps. We offer a novel 3D Flow Field 

Analysis approach in which we examine the motion behavior of the registered point sets in 

order to precisely recognise the moving objects from data gathered using a potentially fast 

moving platform. The proposed algorithm elegantly models the temporal and spatial 

displacement of the moving objects. Thus, both small moving objects (e.g. walking 

pedestrians) and large moving objects (e.g. moving trucks) can be detected effectively. We 

also suggest a Sparse Flow Clustering technique to group the 3D motion flows under the 

restrictions of motion similarity and spatial closeness by utilising the Sparse Subspace 

Clustering framework. In order to accomplish photorealistic 3D reconstructions, the static 

scene elements and the moving objects can each be treated independently. Last but not least, 

we demonstrate that the proposed 3D Flow Field Analysis algorithm and the Sparse Flow 

Clustering approach are extremely effective for motion detection and segmentation, as 
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demonstrated on the KITTI benchmark, and produce high quality reconstructed static-maps as 

well as rigidly moving objects [4]. 

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt, D. 

Cremers, and T. Brox, “Flownet: Learning optical flow with convolutional networks”, 

Convolutional neural networks (CNNs) have recently been very successful in a variety of 

computer vision tasks, especially on those linked to recognition. One of the jobs that CNNs 

have not been effective at is optical flow estimation. In this research, we build suitable CNNs 

that can handle the supervised learning task of addressing the optical flow estimate problem. 

We propose and compare two architectures: a generic architecture and another one including a 

layer that correlates feature vectors at different image locations. Since existing ground truth 

datasets are not sufficiently large to train a CNN, we generate a synthetic Flying Chairs 

dataset. We demonstrate that networks trained on these fictitious data nonetheless generalise 

to existing datasets like Sintel and KITTI with excellent performance, achieving competitive 

accuracy at frame speeds of 5 to 10 fps[5]. 

3. RELATED WORK 

As a result of the relative 3D motion of the objects and the camera used to observe them, 

optical flow defines the pixel displacement on a projected 2D image [11]. Traditional 

methods define optical flow estimation as an energy minimization problem based on 

brightness consistency and spatial smoothness [12]. With the rapid development of deep 

learning, optical flow neural network can predict optical flow directly from a pair of images 

in an end-to-end manner Ranjan et al. [25] propose the coarse-to-fine pyramid structure to 

make the network model size much smaller and improve the accuracy. Sun et al. [25] propose 

the PWC-Net, which performs warp operations and cost volume calculations for each level of 

the pyramid, showing the strong performance. Yang et al. [26] improve the volumetric layer 

by using the encoder decoder architectures, to reduce parameters and achieve better 

performance. These supervised approaches need numerous data with optical flows labels to 

achieve better performance. However these data are expensive to obtain [19], [27], and 

sometimes special methods are even needed to get them, [28], which limits the application of 

these supervised methods. The unsupervised approach avoids the need for labels through 

some regularization and has been the focus of recent research [7]–[18].  

In the unsupervised approach, a function is learned from the unlabeled dataset to produce the 

optical flow. As research advances, the restrictions on unsupervised training keep getting 

tighter, allowing neural networks to utilise unlabeled data more fully, such as edge-aware 

smoothness [9], photometric consistency loss [27], occlusion estimation distillation learning 

based on teacher and student models [13], [14] and so on. UFlow [18] examines the essential 

elements of an unsupervised optical flow model in a systematic manner to determine which is 

most efficient and then selects the optimum combination of those elements to achieve the best 

performance across all benchmarks.  

Besides those key components of unsupervised optical flow estimation, there are many other 

improvements. Wang et al. [9] To address the issue of significant estimation errors brought 
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on by significant motions, explicitly model occlusion and suggest a new warping strategy. 

Alletto et al. [11] divide the optical flow estimation into two steps: global transformation with 

homography and refinement by a deeper network, which can make the optical flow 

estimation more accurate. Janai et al. [12] In order to process occlusions in the unsupervised 

learning of optical flow, start by using multi-frame data. For better flow estimation, SelFlow 

[14] makes use of temporal information from many frames. In order to include global 

geometric limitations into network learning, Zhong et al. [21] propose Deep Epipolar Flow. 

Using triangular and quadrilateral constraint losses, Flow2Stereo [32] trains a network to 

predict both flow and stereo. Df-net [15] proposes the cross consistency loss of the depth and 

pose based rigid flow and optical flow in rigid regions. Ranjan et al. [16] To achieve 

unsupervised coordinated training of the four tasks of depth, camera motion, optical flow, and 

motion segmentation, put forth the idea of competitive collaboration. In an unsupervised 

method, Wang et al. [17], [33] divide an image into three sections: the occluded region, the 

non-rigid region, and the rigid region. These sections are used to jointly estimate pose, depth, 

and optical flow.  

As previously indicated, numerous studies on optical flow unsupervised learning have been 

conducted in recent years. Yet, as the occlusion regions are unsuitable for picture 

reconstruction, many studies concentrate on the occlusion issue. There are seldom works on 

non-occlusion constraints. In this paper, novel unsupervised losses of optical flow are 

proposed based on geometric constraints in non-occlusion regions. The pixels in the non-

occlusion regions are used to calculate these proposed losses: optical flow non-intersection 

loss and optical flow non-blocking loss, to punish the pixels that do not meet the constraints, 

which plays a guiding role in the model training. 

4. SYSTEM ARCHITECTURE 

2D image is a reflection of the real 3D world and the real motion takes place in 3D space. 

The 2D optical flow can be obtained by projecting the 3D scene flow to the 2D image plane 

as in Fig. 1. The camera is supposed to be stationary for the purposes of presentation and 

explanation, and the motion of the viewed objects is what causes the occlusion. In Fig. 1(a), 

at t frame, the car and the pedestrian can be seen by the camera, while the nearer car will 

occlude the farther pedestrian at t +1 frame. The pixels of cars and pedestrians at t and t +1 

frames are visualized on the image plane. The occluded pixels of the pedestrian will be 

surrounded by the pixels of the car. Similarly, the pixels of the car covering the pedestrian are 

also surrounded by the pixels of the pedestrian. At the same time, the pixels of different 

objects are intersected when occlusion appears[28]. That is, flow intersection and pixel 

blocking have a connection with occlusion. Fig. 1 offers a flexible and deformable non-

occlusion object. It can be seen that some pixels have a motion away from the camera in 3D 

space. While there is an aggregated optical flow field, neither the optical flow nor the pixels 

are stopped by any nearby adjacent pixel clusters. These facts lead us to deduce the laws that, 

in non-occlusion zones, the optical flow will not intersect and the pixels won't be blocked by 

nearby neighboring pixel clusters. There are two extreme situations that are not consistent 
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with the laws. It will be found that they happen so rarely in practice that the laws are satisfied 

in real applications. 

a. Architecture Of Proposed System 

 Two images, Xt and Xt+1, are fed into our network to estimate the optical flow. The 

forward-backward consistency based on the flow fields is used to estimate occlusion. The 

census loss compares the warped image Xbt to the corresponding original image Xt and 

expresses their difference[27]. Forward flow Vt and backward flow Vt+1 are regularized 

using smoothness loss. Finally, the non-intersection loss and the non-blocking loss based on 

geometric constraints of optical flow are used to guide the training. 

The overview of our unsupervised learning pipeline of optical flow is shown in Fig. 1. There 

are two adjacent images Xt ∈ R H×W×3 and Xt+1 ∈ R H×W×3 . They are input to an optical 

flow estimation network fθ to get the forward optical flow Vt = fθ(Xt, Xt+1) and backward 

optical flow Vt+1 = fθ(Xt+1, Xt). The Vt ∈ R H×W×2 indicates the 2D flow vector from Xt to 

Xt+1 for each pixel in Xt, while Vt+1 indicates the optical flow from Xt+1 to Xt. Our 

objective is to obtain perfect parameters θ of the network from image sequences without the 

ground truth of optical flow to realize the optimized performance of optical flow. Fig. 1 gives 

the losses in one direction (t to t + 1), and the other direction (t+1 to t) is similar. The 

consistency of forward and backward optical flow is used to estimate the occlusion regions 

[9]. Then, the non-occlusion regions are the other part in an image[28]. 

 

Fig. 1. Unsupervised learning pipeline of optical flow. 

The optical flow connects the images of adjacent frames at the pixel level. The optical flow 

can be unsupervised trained by measuring the corresponding matching of the pixels between 

two frames. The idea of measuring pixel matching between adjacent frames is commonly 

realized through image warping [25], [34]. Firstly, the corresponding coordinates after optical 

flow are calculated as: [ˆi, ˆj] T = [i, j] T + [ut, vt] T . Then, the warped image can be 
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obtained by the differentiable bilinear interpolation: Xˆ t(i, j) = P i∈bˆic,dˆie,j∈bˆjc,dˆje w 

ijXt(i, j), P i,j w ij = 1. d·e means rounding up to ceil, and b·c means rounding down to floor.  

5. COMPARISION WITH PROPOSED SYSTEM 

In order to demonstrate the effectiveness of our proposed method, our model is evaluated on 

the standard optical flow benchmark datasets: Flying chairs dataset[5], Sintel dataset[27], and 

KITTI 2015 datasets [19][20]. Flying chairs and Sintel are synthetic datasets, and KITTI is a 

real dataset. There are 22,872 image pairings in the Flying Chairs dataset, 22,232 of which are 

utilised as the training set, and the remaining 640 pairs are used as the test set[30]. For the 

Sintel dataset, we divide the training set and test set according to the standard classification 

criteria, where the training set contains 2082 images and the test set contains 1128 images. 

The training set and test set in KITTI 2015 dataset both contain 200 pairs of images. For 

Sintel, it is common to train on the training set, and report the benchmark performance on the 

test set, which is included in our experiment. We expect to evaluate the generalization ability 

of our model on different datasets. However, the test set does not have public labels and there 

is a limit on the number of submissions to the official test set, so to be convenient for our 

experiments, we also train on the test set and evaluate on the training set[29]. Therefore, there 

are two trained models for Sintel dataset. One is trained on the training set; the other is trained 

on the test set.  

The Sintel dataset comprises both the final and clean sections, therefore they are utilised 

independently when evaluating the model and together while training it, similar to Uflow [18]. 

In addition, pretraining is a very common method to improve accuracy in both supervised 

[5]and unsupervised [13]optical flow estimation, so we have a pretraining stage in the training 

set of Flying. 

Table 1.Experiment Result based on Sintel Clean and Sintel Final Dataset 
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6. CONCLUSION 

In this paper, the motion regularity of the optical flow in the non-occlusion regions is carefully 

analyzed, and the geometric constraint laws of the optical flow in the non-occlusion regions 

are proposed. Two loss functions, non-intersection loss and non-blocking loss, are proposed 

based on the insight into the motion laws of optical flow in the non-occlusion regions. Their 

effectiveness has been proved by theoretical analysis and experiments. Optical flow is widely 

used in visual odometry, target tracking, dynamic segmentation, and other autonomous driving 

fields. The proposed method has a higher generalization performance on the real dataset, 

which makes the unsupervised method of optical flow in this paper have good practical 

application ability. Furthermore helpful for depth estimation, visual odometers, depth 

completeness, and scene flow estimates are pixel-level geometric analysis and occlusion 

analysis. 
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