A Certain Family for Higher-Order Derivatives of Multivalent Analytic Functions Associated with Dziok-Srivastava Operator

Abbas Kareem Wanas ${ }^{1}$ and Faiz Chaseb Khudher ${ }^{2}$
${ }^{1,2}$ Department of Mathematics
College of Science
University of Al-Qadisiyah, Iraq
E-Mails: abbas.kareem.w@qu.edu.iq ${ }^{1}$, almdrsfayz@gmail.com

Article Info

Page Number: 1778-1788
Publication Issue:
Vol 72 No. 1 (2023)

Article History

Article Received: 15 October 2022
Revised: 24 November 2022
Accepted: 18 December 2022

Abstract

By making use of the principle of differential subordination, we introduce and study a family for higher-order derivatives of multivalent analytic functions which are defined by means of a Dziok-Srivastava operator. We obtain some important results connected to inclusion relationship, argument estimate, integral representation and subordination property.

Keywords : Multivalent functions, Subordination, Integral representation, Higher-order derivatives, Dziok-Srivastava operator.

1. Introduction

Let \mathcal{A}_{p} denote the family of functions f of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p}, \quad p \in \mathbb{N}=\{1,2, \ldots\} \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ and let $\mathcal{A}_{1}=\mathcal{A}$. Upon differentiating both sides of (1.1) j-times with respect to z, we obtain

$$
f^{(j)}(z)=\varphi(p, j) z^{p-j}+\sum_{n=1}^{\infty} \varphi(n+p, j) a_{n+p} z^{n+p-j}
$$

where

$$
\varphi(p, j)=\frac{p!}{(p-j)!}=\left\{\begin{array}{ll}
1, & j=0 \\
p(p-1) \ldots & (p-j+1),
\end{array} \quad j \neq 0\right. \text {, }
$$

and $p, j \in \mathbb{N}, p>j$.
Stimulated by "aforementioned works on multivalent functions with higher - order derivatives (see, for example [1,7,14,15,16]).

Given two functions f and g which are analytic in U, we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)(z \in U)$, if there exists a Schwarz function w which is analytic in U with
$w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z)),(z \in U)$. In particular, if the function g is univalent in U, then $f<g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$.

For functions f given by (1.1) and $g \in \mathcal{A}_{p}$ given by

$$
g(z)=z^{p}+\sum_{n=1}^{\infty} b_{n+p} z^{n+p},
$$

the Hadamard product $f * g$ of f and g is defined by

$$
(f * g)(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} b_{n+p} z^{n+p}=(g * f)(z) .
$$

For complex parameters $\alpha_{i} \in \mathbb{C}, \beta_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}$, where $\mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ; 1 \leq i \leq l, 1 \leq j \leq$ $k ; l, k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, the generalized hypergeometric function ${ }_{l} F_{k}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{k} ; z\right)$ is defined by the following infinite series:

$$
{ }_{l} F_{k}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{k} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{l}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{k}\right)_{n}} \frac{z^{n}}{n!},\left(l \leq k+1 ; l, k \in \mathbb{N}_{0} ; z \in U\right)
$$

where $(x)_{n}$ is the Pochhammer symbol defined by

$$
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}=\left\{\begin{array}{cl}
1 & (n=0), \\
x(x+1) \ldots(x+n-1) & (n \in \mathbb{N}) .
\end{array}\right.
$$

Corresponding to a function $h_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{k} ; z\right)$ defined by

$$
\begin{equation*}
h_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{k} ; z\right)=z^{p}{ }_{l} F_{k}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{k} ; z\right) . \tag{1.2}
\end{equation*}
$$

Dziok and Srivastava [3] introduced a linear operator

$$
H_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{k}\right): R(p, 1) \rightarrow R(p, 1)
$$

defined in terms of the Hadamard product as

$$
H_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{k}\right) f(z)=h_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{k} ; z\right) * f(z) .
$$

If $f \in R(p, 1)$ is given by (1.1), then we have

$$
\begin{equation*}
H_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{k}\right) f(z)=z^{p}+\sum_{n=1}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{l}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{k}\right)_{n} n!} a_{n+p} z^{n+p} . \tag{1.3}
\end{equation*}
$$

In order to make the notation simple, we write $H_{p}^{l, k}\left(\alpha_{1}\right)=H_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{k}\right)$.
We note from (1.3) that, we have

$$
\begin{equation*}
z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{\prime}=\alpha_{1} H_{p}^{l, k}\left(\alpha_{1}+1\right) f(z)-\left(\alpha_{1}-p\right) H_{p}^{l, k}\left(\alpha_{1}\right) f(z) \tag{1.4}
\end{equation*}
$$

Differentiating (1.4), $(j-1)$ times, we get
$z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j)}=\alpha_{1}\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f(z)\right)^{(j-1)}-\left(\alpha_{1}-p+j-1\right)\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}$.
We note that special cases of the Dziok-Srivastava operator $H_{p}^{l, k}\left(\alpha_{1}\right)$ include the Hohlov linear operator [6], the Carlson-Shafer operator [2], the Ruscheweyh derivative operator [12], the Srivastava-Owa fractional operator [10] and many others.

Let T be the class of functions h of the form:

$$
h(z)=1+\sum_{n=1}^{\infty} h_{n} z^{n}
$$

which are analytic and convex univalent in U and satisfy the condition:

$$
\operatorname{Re}\{h(z)\}>0, \quad(z \in U) .
$$

We will require the following lemmas in proving our main results.
Lemma 1.1 [5]. Let $u, v \in \mathbb{C}$ and suppose that ψ is convex and univalent in U with $\psi(0)=1$ and $\operatorname{Re}\{u \psi(z)+v\}>0,(z \in U)$. If q is analytic in U with $q(0)=1$, then the subordination

$$
q(z)+\frac{z q^{\prime}(z)}{u q(z)+v}<\psi(z)
$$

implies that $q(z)<\psi(z)$.
Lemma 1.2 [8]. Let h be convex univalent in U and \mathcal{T} be analytic in U with $\operatorname{Re}\{\mathcal{T}(z)\} \geq 0,(z \in U)$. If q is analytic in U and $q(0)=h(0)$, then the subordination

$$
q(z)+\mathcal{T}(z) z q^{\prime}(z)<h(z)
$$

implies that $q(z)<h(z)$.
Lemma 1.3 [4]. Let q be analytic in U with $q(0)=1$ and $q(z) \neq 0$ for all $z \in U$. If there exists two points $z_{1}, z_{2} \in U$ such that

$$
-\frac{\pi}{2} b_{1}=\arg \left(q\left(z_{1}\right)\right)<\arg (q(z))<\arg \left(q\left(z_{2}\right)\right)=\frac{\pi}{2} b_{2},
$$

for some b_{1} and $b_{2}\left(b_{1}>0, b_{2}>0\right)$ and for all $z\left(|z|<\left|z_{1}\right|=\left|z_{2}\right|\right)$, then

$$
\frac{z_{1} q^{\prime}\left(z_{1}\right)}{q\left(z_{1}\right)}=-i\left(\frac{b_{1}+b_{2}}{2}\right) m \quad \text { and } \quad \frac{z_{2} q^{\prime}\left(z_{2}\right)}{q\left(z_{2}\right)}=i\left(\frac{b_{1}+b_{2}}{2}\right) m
$$

where

$$
m \geq \frac{1-|\varepsilon|}{1+|\varepsilon|} \quad \text { and } \quad \varepsilon=i \tan \frac{\pi}{4}\left(\frac{b_{2}-b_{1}}{b_{1}+b_{2}}\right) .
$$

Lemma 1.4 [11]. The function

$$
(1-z)^{\eta} \equiv \exp (\log (1-z)), \quad(\eta \neq 0)
$$

is univalent if and only if η is either in the closed disk $|\eta-1| \leq 1$ or in the closed disk $|\eta+1| \leq 1$.

Lemma 1.5 [9]. Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing $q(U)$ with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z)=z q^{\prime}(z) \phi(q(z))$ and $h(z)=$ $\theta(q(z))+Q(z)$. Suppose that
(1) $Q(z)$ is starlike univalent in U,
(2) $\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}>0$ for $z \in U$.

If F is analytic in U, with $F(0)=q(0), F(U) \subset D$ and

$$
\theta(F(z))+z F^{\prime}(z) \phi(F(z))<\theta(q(z))+z q^{\prime}(z) \phi(q(z))
$$

then $F \prec q$ and q is the best dominant.

2. Main Results

Definition 2.1. A function $f \in \mathcal{A}_{p}$ is said to be in the family $N\left(\alpha_{1}, l, k, p, j, \gamma ; h\right)$ if it satisfies the following differential subordination condition:

$$
\begin{equation*}
\frac{1}{p-j+1-\gamma}\left(\frac{z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}}-\gamma\right)<h(z) \tag{2.1}
\end{equation*}
$$

where $p, j \in \mathbb{N}, p>j, 0 \leq \gamma<p$ and $h \in T$.
Theorem 2.1. Let $\operatorname{Re}\left\{(p-j+1-\gamma) h(z)+\gamma+\left(\alpha_{1}-p+j-1\right)\right\}>0$. Then

$$
N\left(\alpha_{1}+1, l, k, p, j, \gamma ; h\right) \subset N\left(\alpha_{1}, l, k, p, j, \gamma ; h\right) .
$$

Proof. Let $f \in N\left(\alpha_{1}+1, l, k, p, j, \gamma ; h\right)$ and put

$$
\begin{equation*}
q(z)=\frac{1}{(p-j+1-\gamma)}\left(\frac{z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}}-\gamma\right) \tag{2.2}
\end{equation*}
$$

Then q is analytic in U with $q(0)=1$. According to (2.2) and using the relation (1.5), we obtain

$$
\begin{equation*}
\frac{\alpha_{1}\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f(z)\right)^{(j-1)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}}=(p-j+1-\gamma) q(z)+\gamma+\left(\alpha_{1}-p+j-1\right) . \tag{2.3}
\end{equation*}
$$

By logarithmically differentiating both sides of (2.3) with respect to z and multiplying by z, we get

$$
\begin{align*}
q(z)+\frac{z q^{\prime}(z)}{(p-j}+ & +1-\gamma) q(z)+\gamma+\left(\alpha_{1}-p+j-1\right) \\
& =\frac{1}{(p-j+1-\gamma)}\left(\frac{z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}}-\gamma\right) \prec h(z) . \tag{2.4}
\end{align*}
$$

Since $\operatorname{Re}\left\{(p-j+1-\gamma) h(z)+\gamma+\left(\alpha_{1}-p+j-1\right)\right\}>0$, then applying Lemma 1.1 to the subordination (2.4), yields $q(z)<h(z)$, which implies $f \in N\left(\alpha_{1}, l, k, p, j, \gamma ; h\right)$.

Theorem 2.2. Let $\in \mathcal{A}_{p}, 0<a_{1}, a_{2} \leq 1$ and $0 \leq \gamma<p$. If

$$
-\frac{\pi}{2} a_{1}<\arg \left(\frac{z\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f(z)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) g(z)\right)^{(j-1)}}-\gamma\right)<\frac{\pi}{2} a_{2}
$$

for some $g \in N\left(\alpha_{1}+1, l, k, p, j, \gamma ; h ; \frac{1+A Z}{1+B Z}\right),(-1 \leq B<A \leq 1)$, then

$$
-\frac{\pi}{2} b_{1}<\arg \left(\frac{z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) g(z)\right)^{(j-1)}}-\gamma\right)<\frac{\pi}{2} b_{2}
$$

where b_{1} and $b_{2}\left(0<b_{1}, b_{2} \leq 1\right)$ are the solutions of the equations :

$$
=\left\{\begin{array}{c}
a_{1} \\
b_{1}+\frac{2}{\pi} \tan ^{-1}\left(\frac{(1-|\varepsilon|)\left(b_{1}+b_{2}\right) \cos \frac{\pi}{2} t}{2(1+|\varepsilon|)\left(\frac{(1+A)(p-j+1-\gamma)}{1+B}+\gamma+\left(\alpha_{1}-p+j-1\right)\right)+(1-|\varepsilon|)\left(b_{1}+b_{2}\right) \sin \frac{\pi}{2} t}\right), B \neq-1 \\
b_{1} \quad, B=-1
\end{array}\right.
$$

and

$$
=\left\{\begin{array}{c}
a_{2} \\
b_{2}+\frac{2}{\pi} \tan ^{-1}\left(\frac{(1-|\varepsilon|)\left(b_{1}+b_{2}\right) \cos \frac{\pi}{2} t}{2(1+|\varepsilon|)\left(\frac{(1+A)(p-j+1-\gamma)}{1+B}+\gamma+\alpha_{1}-p+j-1\right)+(1-|\varepsilon|)\left(b_{1}+b_{2}\right) \sin \frac{\pi}{2} t}\right), B \neq-1 \\
b_{2} \quad, B=-1
\end{array}\right.
$$

with

$$
=\frac{2}{\pi} \sin ^{-1}\left(\frac{(A-B)(p-j+1-\gamma)}{\left(\gamma+\alpha_{1}-p+j-1\right)\left(1-B^{2}\right)+(p-j+1-\gamma)(1-A B)}\right) . \quad \text { (2.7) }
$$

Proof. Define the function G by

$$
\begin{equation*}
G(z)=\frac{1}{(p-j+1-\tau)}\left(\frac{z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) g(z)\right)^{(j-1)}}-\tau\right) \tag{2.8}
\end{equation*}
$$

where $g \in N\left(\alpha_{1}+1, l, k, p, j, \gamma ; h ; \frac{1+A Z}{1+B z}\right),(-1 \leq B<A \leq 1)$ and $0 \leq \tau<p$.
Then G is analytic in U with $G(0)=1$. Therefore by making use of (1.5) and (2.8), we obtain

$$
\begin{aligned}
&((p-j+1-\tau) G(z)+\tau)\left(H_{p}^{l, k}\left(\alpha_{1}\right) g(z)\right)^{(j-1)} \\
&=\alpha_{1}\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f(z)\right)^{(j-1)}-\left(\alpha_{1}-p+j-1\right)\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}
\end{aligned}
$$

Differentiating above relation with respect to z and multiplying by z, we get

$$
\begin{align*}
& ((p-j+1-\tau) G(z)+\tau) z\left(H_{p}^{l, k}\left(\alpha_{1}\right) g(z)\right)^{(j)}+(p-j+1-\tau) z G^{\prime}(z)\left(H_{p}^{l, k}\left(\alpha_{1}\right) g(z)\right)^{(j-1)} \\
& \quad=\alpha_{1} z\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f(z)\right)^{(j)}-\left(\alpha_{1}-p+j-1\right) z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j)} \tag{2.9}
\end{align*}
$$

Suppose that

$$
L(z)=\frac{1}{(p-j+1-\gamma)}\left(\frac{z\left(H_{p}^{l, k}\left(\alpha_{1}\right) g(z)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) g(z)\right)^{(j-1)}}-\gamma\right) .
$$

Using (1.5) again, we have

$$
\begin{equation*}
\frac{\alpha_{1}\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) g(z)\right)^{(j-1)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) g(z)\right)^{(j-1)}}=(p-j+1-\gamma) L(z)+\gamma+\left(\alpha_{1}-p+j-1\right) \tag{2.10}
\end{equation*}
$$

From (2.8) and (2.10), we easily get

$$
\begin{align*}
G(z)+\frac{z G^{\prime}(z)}{(p-j}+ & +1-\gamma) L(z)+\gamma+\left(\alpha_{1}-p+j-1\right) \\
& =\frac{1}{(p-j+1-\tau)}\left(\frac{z\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f(z)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) g(z)\right)^{(j-1)}}-\tau\right) \tag{2.11}
\end{align*}
$$

Notice that from Theorem 2.1, $g \in N\left(\alpha_{1}+1, l, k, p, j, \gamma ; \frac{1+A Z}{1+B Z}\right)$ implies $g \in N\left(\alpha_{1}, l, k, p, j, \gamma ; \frac{1+A Z}{1+B Z}\right)$. Thus,

$$
L(z)<\frac{1+A Z}{1+B z} \quad(-1 \leq B<A \leq 1)
$$

By using the result of Silverman and Silvia [13], we have

$$
\begin{equation*}
\left|L(z)-\frac{1-A B}{1-B^{2}}\right|<\frac{A-B}{1-B^{2}} \quad(B \neq-1, \quad z \in U) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{L(z)\}>\frac{1-A}{2} \quad(B=-1, \quad z \in U) . \tag{2.13}
\end{equation*}
$$

It follows from (2.12) and (2.13) that

$$
\begin{aligned}
& \mid(p-j+1-\gamma) L(z)+\gamma+\alpha_{1}-p+j-1 \\
& \left.-\frac{\left(\gamma+\alpha_{1}-p+j-1\right)\left(1-B^{2}\right)+(p-j+1-\gamma)(1-A B)}{1-B^{2}} \right\rvert\, \\
&<\frac{(A-B)(p-j+1-\gamma)}{1-B^{2}}, \quad(B \neq-1, \quad z \in U)
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Re}\left\{(p-j+1-\gamma) L(z)+\gamma+\alpha_{1}-p+j-1\right\} \\
& \quad>\frac{(1-A)(p-j+1-\gamma)}{2}+\gamma+\alpha_{1}-p+j-1, \quad(B=-1, \quad z \in U) .
\end{aligned}
$$

Putting

$$
(p-j+1-\gamma) L(z)+\gamma+\alpha_{1}-p+j-1=\rho e^{i \frac{\pi}{2} \phi}
$$

where

$$
\begin{aligned}
& -\frac{(A-B)(p-j+1-\gamma)}{\left(\gamma+\alpha_{1}-p+j-1\right)\left(1-B^{2}\right)+(p-j+1-\gamma)(1-A B)}<\phi \\
& <\frac{(A-B)(p-j+1-\gamma)}{\left(\gamma+\alpha_{1}-p+j-1\right)\left(1-B^{2}\right)+(p-j+1-\gamma)(1-A B)},(B \neq-1)
\end{aligned}
$$

and $-1<\phi<1,(B=-1)$,
then

$$
\begin{aligned}
& \frac{(1-A)(p-j+1-\gamma)}{1-B}+\gamma+\alpha_{1}-p+j-1<\rho \\
& \quad<\frac{(1+A)(p-j+1-\gamma)}{1+B}+\gamma+\alpha_{1}-p+j-1, \quad(B \neq-1)
\end{aligned}
$$

and

$$
\frac{(1-A)(p-j+1-\gamma)}{1-B}+\gamma+\alpha_{1}-p+j-1<\rho<\infty, \quad(B=-1)
$$

An application of Lemma 1.2 with $(z)=\frac{1}{(p-j+1-\gamma) L(z)+\gamma+\alpha_{1}-p+j-1}$, yields $G(z)<h(z)$.
If there exist two points $z_{1}, z_{2} \in U$ such that

$$
-\frac{\pi}{2} b_{1}=\arg \left(G\left(z_{1}\right)\right)<\arg (G(z))<\arg \left(G\left(z_{2}\right)\right)=\frac{\pi}{2} b_{2},
$$

then by Lemma 1.3, we get

$$
\frac{z_{1} G^{\prime}\left(z_{1}\right)}{G\left(z_{1}\right)}=-\frac{m i}{2}\left(b_{1}+b_{2}\right) \quad \text { and } \quad \frac{z_{2} G^{\prime}\left(z_{2}\right)}{G\left(z_{2}\right)}=\frac{m i}{2}\left(b_{1}+b_{2}\right),
$$

where

$$
m \geq \frac{1-|\varepsilon|}{1+|\varepsilon|} \quad \text { and } \quad \varepsilon=i \tan \frac{\pi}{4}\left(\frac{b_{2}-b_{1}}{b_{1}+b_{2}}\right) .
$$

Now, for the case $B \neq-1$, we obtain

$$
\arg \left(\frac{1}{(p-j+1-\tau)}\left(\frac{z_{1}\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f\left(z_{1}\right)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) g\left(z_{1}\right)\right)^{(j-1)}}-\tau\right)\right)
$$

$=\arg \left(G\left(z_{1}\right)+\frac{z_{1} G^{\prime}\left(z_{1}\right)}{(p-j+1-\gamma) L\left(z_{1}\right)+\gamma+\alpha_{1}-p+j-1}\right)$
$=\arg \left(G\left(z_{1}\right)\right)+\arg \left(1+\frac{z_{1} G^{\prime}\left(z_{1}\right)}{\left[(p-j+1-\gamma) L\left(z_{1}\right)+\gamma+\alpha_{1}-p+j-1\right] G\left(z_{1}\right)}\right)$
$=-\frac{\pi}{2} b_{1}+\arg \left(1-\frac{m i}{2 \rho}\left(b_{1}+b_{2}\right) e^{-i \frac{\pi}{2} \phi}\right)$
$=-\frac{\pi}{2} b_{1}+\arg \left(1-\frac{m}{2 \rho}\left(b_{1}+b_{2}\right) \cos \frac{\pi}{2}(1-\phi)+\frac{m i}{2 \rho}\left(b_{1}+b_{2}\right) \sin \frac{\pi}{2}(1-\phi)\right)$
$\leq-\frac{\pi}{2} b_{1}-\tan ^{-1}\left(\frac{m\left(b_{1}+b_{2}\right) \sin \frac{\pi}{2}(1-\phi)}{2 \rho+m\left(b_{1}+b_{2}\right) \cos \frac{\pi}{2}(1-\phi)}\right)$
$\leq-\frac{\pi}{2} b_{1}$
$-\tan ^{-1}\left(\frac{(1-|\varepsilon|)\left(b_{1}+b_{2}\right) \cos \frac{\pi}{2} t}{2(1+|\varepsilon|)\left(\frac{(1+A)(p-j+1-\gamma)}{1+B}+\gamma+\alpha_{1}-p+j-1\right)+(1-|\varepsilon|)\left(b_{1}+b_{2}\right) \sin \frac{\pi}{2} t}\right)$ $=-\frac{\pi}{2} a_{1}$,
where a_{1} and t are given by (2.5) and (2.7), respectively.
Also,
$\arg \left(\frac{1}{(p-j+1-\tau)}\left(\frac{z_{2}\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f\left(z_{2}\right)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) g\left(z_{2}\right)\right)^{(j-1)}}-\tau\right)\right)$
$\geq \frac{\pi}{2} b_{2}$
$+\tan ^{-1}\left(\frac{(1-|\varepsilon|)\left(b_{1}+b_{2}\right) \cos \frac{\pi}{2} t}{2(1+|\varepsilon|)\left(\frac{(1+A)(p-j+1-\gamma)}{1+B}+\gamma+\alpha_{1}-p+j-1\right)+(1-|\varepsilon|)\left(b_{1}+b_{2}\right) \sin \frac{\pi}{2} t}\right)$
$=\frac{\pi}{2} a_{2}$,
where a_{2} and t are given by (2.6) and (2.7), respectively.
Similarly, for the case $B=-1$, we have

$$
\arg \left(\frac{1}{(p-j+1-\tau)}\left(\frac{z_{1}\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f\left(z_{1}\right)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) g\left(z_{1}\right)\right)^{(j-1)}}-\tau\right)\right) \leq-\frac{\pi}{2} b_{1}
$$

and

$$
\arg \left(\frac{1}{(p-j+1-\tau)}\left(\frac{z_{1}\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f\left(z_{2}\right)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) g\left(z_{2}\right)\right)^{(j-1)}}-\tau\right)\right) \geq \frac{\pi}{2} b_{2}
$$

The above two cases contradict the assumptions. Consequently, the proof of the theorem is complete.
In the following theorem, we find integral representation of the family $N\left(\alpha_{1}, l, k, p, j, \gamma ; h\right)$.
Theorem 2.3. Let $f \in N\left(\alpha_{1}, l, k, p, j, \gamma ; h\right)$. Then

$$
\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}=z^{p-j+1} \cdot \exp \left[(p-j+1-\gamma) \int_{0}^{z} \frac{h(w(s))-1}{s} d s\right]
$$

where w is analytic in U with $w(0)=0$ and $|w(z)|<1,(z \in U)$.
Proof. Assume that $f \in N\left(\alpha_{1}, l, k, p, j, \gamma ; h\right)$. It is easy to see that subordination condition (2.1) can be written as follows

$$
\begin{equation*}
\frac{z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}}=(p-j+1-\gamma) h(w(z))+\gamma \tag{2.14}
\end{equation*}
$$

where w is analytic in U with $w(0)=0$ and $|w(z)|<1,(z \in U)$.
From (2.14), we find that

$$
\begin{equation*}
\frac{\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}}-\frac{p-j+1}{z}=(p-j+1-\gamma) \frac{h(w(z))-1}{z} \tag{2.15}
\end{equation*}
$$

After integrating both sides of (2.15), we have

$$
\begin{equation*}
\log \left(\frac{\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}}{z^{p-j+1}}\right)=(p-j+1-\gamma) \int_{0}^{z} \frac{h(w(s))-1}{s} d s . \tag{2.16}
\end{equation*}
$$

Therefore, from (2.16), we obtain the required result.
Theorem 2.4. Let $1<\beta<2$ and $\eta \in \mathbb{R} \backslash\{0\}$ such that either $\left|2 \eta(\beta-1) \alpha_{1}+1\right| \leq 1$ or $\mid 2 \eta(\beta-$ 1) $\alpha_{1}-1 \mid \leq 1$. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f(z)\right)^{(j-1)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}}\right\}>2-\beta+\frac{1-p}{\alpha_{1}} \tag{2.17}
\end{equation*}
$$

then,

$$
\left(z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}\right)^{\eta} \prec(1-z)^{-2 \eta(\beta-1) \alpha_{1}}
$$

and $(1-z)^{-2 \eta(\beta-1) \alpha_{1}}$ is the best dominant."
Proof. Define the function k by

$$
\begin{equation*}
F(z)=\left(z\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}\right)^{\eta} \tag{2.18}
\end{equation*}
$$

Differentiating (2.18) with respect to z logarithmically and using (1.5), we obtain

$$
\frac{z F^{\prime}(z)}{F(z)}=\frac{\eta \alpha_{1}\left(H_{p}^{l, k}\left(\alpha_{1}+1\right) f(z)\right)^{(j-1)}}{\left(H_{p}^{l, k}\left(\alpha_{1}\right) f(z)\right)^{(j-1)}}-\eta\left(\alpha_{1}-p+j-1\right) .
$$

Now, in view of the condition (2.16), we have the following subordination

$$
1+\frac{z F^{\prime}(z)}{\eta \alpha_{1} F(z)}<\frac{1+(2 \beta-3) z}{1-z} .
$$

Assume that

$$
\theta(w)=1, \quad \phi(w)=\frac{1}{\eta \alpha_{1} w}
$$

and

$$
q(z)=(1-z)^{-2 \eta(\beta-1) \alpha_{1}},
$$

then by making use of Lemma 1.4, we know that q is univalent in U. It now follows that

$$
Q(z)=z q^{\prime}(z) \phi(q(z))=\frac{2(\beta-1) z}{1-z}
$$

and

$$
h(z)=\theta(q(z))+Q(z)=\frac{1+(2 \beta-3) z}{1-z} .
$$

If we define the domain D by

$$
q(U)=\left\{w:\left|w^{\frac{1}{\sigma}}-1\right|<\left|w^{\frac{1}{\sigma}}\right|, \sigma=2 \eta(\beta-1) \alpha_{1}\right\} \subset D
$$

then, it is easy to check that the conditions of Lemma 1.5 hold true. Therefore, we get the desired result.

References

[1] O. Altintas, Neighborhoods of certain p-valentiy functions with negative coefficients, Appl. Math comput., 187(1)(2007), 47-53.
[2] B. C. Carlson and D. B. Shaffer, Starlike and pre-starlike hypergeometric functions, SIAM J. Math Anal., 15(1984), 737-745.
[3] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. , 103(1)(1999), 1-13
[4] A. Ebadian, S. Shams, Z. G. Wang and Y. Sun, A class of multivalent analytic functions involving the generalized Jung-Kim-Srivastava operator, Acta Univ. Apulensis, 18(2009), 265277.
[5] P. J. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential subordination, General Inequalities, Birkhauser, Basel, 3(1983), 339-348.
[6] Ju. E. Hohlov, Operators and operations on the class of univalent functions, Izvestiya Vysshikh Uchebnykh Zavedenič. Matematika, 10(197)(1978), 83-89.
[7] H. Irmak and N. E. Cho, A differential operator and its applications to certain multivalently analytic function , Hacet. J. Math. Stat., 36(1) (2007), 1-6.
[8] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. , 28(1981) , 157-171.
[9] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J., 32(1985), 185-195.
[10] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric function, Canad. J. Math., 39(5)(1987), 1057-1077.
[11] M. S. Robertson, Certain classes of starlike functions, Michigan Math. J., 32(1985), 135-140.
[12] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109115.
[13] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math., 37(1985), 48-61.
[14] A. K. Wanas, On sandwich theorems for higher - order derivatives of multivalent analytic functions associated with the generalized Noor integral operator, Asian-Eur. J. Math., 8(2)(2015), 77-82.
[15] A. K. Wanas and A .H. Majeed, Differential subordination for higher -order derivatives of multivalent analytic functions associated with Dziok-Srivastava operator, An. Univ. Oradea Fasc. Mat., XXX(1)(2018), 33-42.
[16] A. K. Wanas and G. Murugusundaramoorthy, Higher-order derivatives of multivalent analytic functions defined on complex Hilbert space, J. Adv. Math. Stud., 14(2)(2021), 197-205.

