2326-9865

ISSN: 2094-0343

New Topological Sets Close to ω-Open Sets

¹P. REVATHI. ²B. MEERA DEVI AND ³O.RAVI

¹Research Scholar, School of Mathematics, Madurai Kamaraj University, Madurai -21, Tamilnadu, India, e-mail: revsanjeeve@gmail.com.

²Assistant Professor, Department of Mathematics, Sri S Ramasamy Naidy Memorial College, Virudhunagar Dt, Tamilnadu, India, e-mail: abmeeradevi@gmail.com.

¹Associate Professor, Department of Mathematics, PMT College, Usilampatti, Madurai District, Tamil nadu, India, e-mail: siingam@yahoo.com.

Article Info

Page Number: 12604-12618

Publication Issue: Vol. 71 No. 4 (2022) **ABSTRACT:** This paper starts by introducing some topological sets that are very close to ω -open and ω -closed sets in the sense of Hdeib. Moreover the notions of regular ω^* -open, semi- ω^* -open, pre- ω^* -open, α - ω^* -open, β - ω^* -open, b- ω^* -open, *b- ω^* -open , b#- ω^* -open sets and the corresponding closed sets are introduced and studied in this paper.

Article History

Article Received: 25 October 2022 Revised: 28 November 2022 Accepted: 15 December 2022

1. Introduction

This paper starts by introducing some topological sets that are very close to ω -open and ω -closed sets in the sense of Hdeib. Moreover the notions of regular ω^* -open, semi- ω^* -open, pre- ω^* -open, α - ω^* -open, β - ω^* -open, b- ω^* -open, *b- ω^* -open , b[#]- ω^* -open sets and the corresponding closed sets are introduced and studied in this paper. Further, the concepts of p ω -set, q ω -set, q ω -set, q ω *-set and Q ω *-set are defined to investigate the properties of the above sets in conjunction with the recent related concepts that are available in the literature of point set topology.

2. Prelimeneries

Result 2.1

Let A and B be any two subsets of a topological space (X,τ) . The following relations on the interior and closure operators will be useful.

2010 Mathematics Subject Classification: 54A05, 54A10

Key words and phrases., η - ω *-open sets, ρ - ω *-closed sets and $k\omega$ *-sets

 $IntA \subseteq IntClIntA \subseteq ClIntA \subseteq Cl IntCl A \subseteq ClA.$

 $IntA \subseteq IntClIntA \subseteq IntClA \subseteq Cl\ IntClA \subseteq ClA.$

 $IntCl(A \cap B) \subset (IntClA) \cap (IntClB).$

ClInt $(A \cap B) \subset (ClIntA) \cap (ClIntB)$.

 $(IntClA) \cup (IntClB) \subset IntCl(A \cup B).$

 $(ClIntA) \cup (ClIntB) \subset ClInt (A \cup B).$

ClIntClIntA = ClIntA.

IntClInt ClA = IntClA.

Lemma 2.2

- (i) If B is open then (ClA) \cap B \subset Cl(A \cap B).
- (ii) If B is closed then Int $(A \cup B) \subseteq (IntA) \cup B$.

Lemma 2.3

- (i) ClInt Cl $(A \cup B) = ClIntClA \cup ClIn ClB$.
- (ii) $IntClInt(A \cap B) = IntClIntA \cap IntClIntB.$

Definition 2.4 The set A is called

- (i) regular open if A= Int ClA,
- semi-open if A⊆ Cl IntA, (ii)
- (iii) pre-open if A⊆IntClA,
- b-open if A⊂Cl IntA∪IntClA, (iv)
- *b-open if A⊂Cl IntA∩IntClA, (v)
- b[#]-open if A=ClIntA∪IntClA, (vi)

Definition 2.5 The set A is called

- (i) a p-set if ClIntACIntClA,
- (ii) a q-set if IntClA⊆ ClIntA,
- (iii) a Q-set if IntClA ClIntA,
- (iv) a t-set if IntA = IntClA,
- (v) a t^* -set if ClA = ClIntA.

Definition 2.6 The set A is called

- (i) α -open if A \subset IntClIntA.
- (ii) β-open if A \subseteq ClIntClA.

Definition 2.7 The set A is called

- (i) regular closed \Leftrightarrow A= ClIntA,
- (ii) semi-closed \Leftrightarrow IntClA \subseteq A,

- (iii) pre-closed \Leftrightarrow ClIntA \subseteq A,
- (iv) b-closed \Leftrightarrow Cl IntA \cap IntClA \subset A,
- *b-closed \Leftrightarrow ClIntA \cup IntClA \subset A, (v)
- $b^{\#}$ -closed \Leftrightarrow Cl IntA \cap IntClA \subset A, (vi)
- (vii) α -closed \Leftrightarrow Cl IntClA \subset A,
- (viii) β -closed \Leftrightarrow IntClIntA \subset A.

Lemma 2.8 The set A is

- (i) regular open $\Leftrightarrow A = IntClInt A$,
- (ii) regular closed $\Leftrightarrow A = ClIntClA$,
- (iii) semi-open ⇔ClA= ClIntA,
- (iv) semi-closed ⇔IntA= IntClA,
- (v) β -open \Leftrightarrow ClA=ClIntClA,
- (vi) β -closed \Leftrightarrow IntA= IntClIntA.

Lemma 2.9

- (i) If A or B is semi-open then $IntClA \cap IntClB = IntCl(A \cap B)$.
- (ii) If A or B is semi-closed then $CIInt(A \cup B) = CIIntA \cup CIIntB$.

Definition 2. 10 Let A and B be any two subsets of a space (X,τ) . We say that

- (i) A is near to B in (X,τ) if IntA = IntB
- (ii) A is closer to B in (X,τ) if ClA = ClB.
- (iii) A is almost near to B in (X,τ) if IntClA = IntClB.
- (iv) A is almost closer to B in (X,τ) if ClInt A = IntClB.

Definition 2.11 A function $f:(X,\tau)\rightarrow(Y,\sigma)$ is called

- (i) regular continuous if $f^{-1}(V)$ is regular open in X for each $V \in \sigma$,
- (ii) regular irresolute if $f^{-1}(V)$ is regular open in X for each $V \in RO(Y, \sigma)$.

Other types of continuity and irresoluteness can be analogously defined.

Definition 2.12 By a neighourhood (briefly nbd) of a point x in a space X we mean an open set containing x.

Definition 2.13 A space X is locally countable if the space has a base consisting of countable sets and is anti locally countable if every non-empty open set in X is uncountable.

Definition 2.14 For every open neighbourhood U of A,

(i) if ClACU then A is g-closed,

- (ii) if Cl IntA⊂U then A is wg-closed,
- (iii) if $\alpha ClA \subset U$ then A is αg -closed,
- (iv) if sClA⊂U then A is gs-closed,
- (v) if pClA⊂U then A is gp-closed and
- (vi) if $\beta ClA \subseteq U$ then A is $g\beta$ -closed.

Definition 2.15

- (i) If $A \subseteq V$, V is regular open $\Longrightarrow ClA \subseteq V$ then A is rg-closed.
- (ii) If $A \subseteq V$, V is regular open \Longrightarrow pClA $\subseteq V$ then A is gpr-closed.
- (iii) If $A \subseteq V$, V is α -open $\Rightarrow \alpha ClA \subseteq V$ then A is $g\alpha$ -closed.

Definition 2.16 A point x of X is said to be a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable.

Clearly every condensation point of A is its limit point. Let $Cond(A) = \{x : x \text{ is a condensation point of A} \}$ and $Limit(A) = \{x : x \text{ is a limit point of A} \}$. Obviously $Limit(A) \supseteq Cond(A)$.

Definition 2.17 A subset B of X is said to be ω -closed in (X,τ) if B \supset Cond(B).

It is easy to see that every closed set is ω -closed. The complement of an ω -closed set is ω -open. Khalid Y.Al.Zoubi, Al.Nashef established that the collection of all ω -open sets in (X,τ) is a topology on X denoted by τ_{ω} which is finer than τ . Let $Cl_{\omega}(\)$ and $Int_{\omega}(\)$ denote the closure and interior operators in (X,τ_{ω}) .

Lemma 2.18 A subset B of X is ω -open in (X,τ) if and only if for each $x \in B$ there exists $U \in \tau$ such that $U \setminus B$ is countable. Equivalently $x \in Int_{\omega}B$ if and only if there exists $U \in \tau$ such that $U \setminus B$ is countable.

3. ρ - ω *- OPEN SETS where $\rho \in \{\text{semi, pre, } \alpha, \beta, b\}$

The one level operators Int(.), Cl(.), $Int_{\omega}(.)$ and $Cl_{\omega}(.)$ in (X,τ) induce twelve two level operators in (X,τ) namely IntCl(.), $IntInt_{\omega}(.)$, $IntCl_{\omega}(.)$, ClInt(.), $ClInt_{\omega}(.)$, $ClCl_{\omega}(.)$, $Int_{\omega}Int(.)$, $Int_{\omega}Cl(.)$, $Int_{\omega}Cl_{\omega}(.)$, $Cl_{\omega}Int_{\omega}(.)$, $Cl_{\omega}Int(.)$, $Cl_{\omega}Cl(.)$. These two level operators have been linked as shown in the next lemma. It is interesting to note that the two level operators $Int_{\omega}Int(.)$, $IntInt_{\omega}(.)$ and $Cl_{\omega}Cl(.)$, $Cl Cl_{\omega}(.)$ are reduced to the one level operators Int(.) and Cl(.) respectively. Throughout this paper, (X,τ) is a topological space, A and B are subsets of X.

Lemma 3.1 For any subset A of a space (X,τ) , the following always hold.

- (i) $Int_{\omega}IntA = IntA = IntInt_{\omega}A$.
- (ii) $Cl_{\omega}ClA = Cl Cl_{\omega}A = ClA$.

- (iii) $IntCl_{\omega}A \subset IntClA \subset Int_{\omega}ClA$.
- (iv) $IntCl_{\omega}A{\subset}Int_{\omega}Cl_{\omega}A{\subset}Int_{\omega}ClA.$
- $Cl_{\omega}IntA \subset ClIntA \subset ClInt_{\omega}A$. (v)
- $Cl_{\omega}IntA \subset Cl_{\omega}Int_{\omega}A \subset ClInt_{\omega}A$. (vi)

Proof. We have $IntA \subseteq Int_{\omega}A \subseteq A \subseteq Cl_{\omega}A \subseteq ClA$. By applying the interior operator on IntA $\subset Int_{\omega}A \subset A$, we get $IntA \subset Int Int_{\omega}A \subset IntA$ so that $Int Int_{\omega}A = Int A$. Since IntA is ω -open we have Int₀IntA = IntA. This proves the assertion (i). The assertion (ii) can be analogously established.

By replacing A by ClA and A by Cl_{ω} A in IntA \subseteq Int $_{\omega}$ A, we have IntClA \subseteq Int $_{\omega}$ ClA and

Int $Cl_{\omega}A \subset Int_{\omega} Cl_{\omega}A$. By replacing A by IntA and A by Int_{\omega} A in $Cl_{\omega}A \subset ClA$, we have $Cl_{\omega}IntA \subseteq ClIntA$ and $Cl_{\omega}Int_{\omega}A \subseteq ClInt_{\omega}A$.

Taking closure and ω-closure operation on either side of IntA ⊂IntωA we get

 $ClIntA \subseteq ClInt_{\omega}A$ and $Cl_{\omega}IntA \subseteq Cl_{\omega}Int_{\omega}A$.

Taking interior and ω -interior operation on either side of $Cl_{\omega}A\subset ClA$ we get

IntCl $_{\omega}$ A \subseteq IntClA and Int $_{\omega}$ Cl $_{\omega}$ A \subseteq Int $_{\omega}$ ClA.

We have $IntCl_{\omega}A \subset IntClA \subset Int_{\omega}ClA$;

 $IntCl_{\omega}A\subseteq Int_{\omega}Cl_{\omega}A\subseteq Int_{\omega}ClA;$

 $Cl_{\omega}IntA \subseteq ClInt_{\omega}A$ and

 $Cl_{\omega}IntA \subset Cl_{\omega}Int_{\omega}A \subset ClInt_{\omega}A$.

Remark 3.2

- (i) IntClA \neq IntCl $_{\omega}$ A and ClIntB \neq ClInt $_{\omega}$ B,
- (ii) IntClA \neq Int $_{\omega}$ Cl $_{\omega}$ A and ClIntB \neq Cl $_{\omega}$ Int $_{\omega}$ B,
- (iii) IntClA \neq Int $_{\omega}$ ClA and ClIntB \neq Cl $_{\omega}$ IntB,
- IntCl_{ω}A \neq Int $_{\omega}$ ClA and ClInt $_{\omega}$ B \neq Cl $_{\omega}$ IntB, (iv)
- **(v)** IntCl_{ω}A \neq Int_{ω}Cl_{ω}A and ClInt_{ω}B \neq Cl_{ω} Int_{ω}B,
- $Int_{\omega}ClA \neq Int_{\omega}Cl_{\omega}A$ and $Cl_{\omega}IntB \neq Cl_{\omega}Int_{\omega}B$. (vi)

Example 3.3 Let E^1 be the real line. Then the set Q of all rational numbers is ω -closed but not ω -open and Q^c , the set of all irrational numbers is ω -open but not ω -closed. It is easy to see that $IntClQ = E^1$, $Int_{\omega}ClQ = E^1$,

$$IntCl_{\omega}Q = \emptyset$$
, $Int_{\omega}Cl_{\omega}Q = \emptyset$,

$$ClIntQ^{c} = \emptyset$$
, $Cl_{\omega}IntQ^{c} = \emptyset$,

$$ClInt_{\omega}Q^{c} = E^{1}, Cl_{\omega}Int_{\omega}Q^{c} = E^{1}$$
.

2326-9865

Let A=Q and B=Q^c. Then from the above we see that

IntClA = $E^1 \neq \emptyset$ = IntCl $_{\omega}$ A and ClIntB = $\emptyset \neq E^1$ = ClInt $_{\omega}$ B.

IntClA = $E^1 \neq \emptyset$ = Int $_{\omega}$ Cl $_{\omega}$ A and ClIntB = $\emptyset \neq E^1$ =Cl $_{\omega}$ Int $_{\omega}$ B.

 $Int_{\omega}ClA = E^{1} \neq \varnothing = Int_{\omega}Cl_{\omega}A \ \ and \ Cl_{\omega}IntB = \ \varnothing \neq E^{1} = Cl_{\omega} \ Int_{\omega}B.$

Thus (i), (ii) and (vi) in the above remark are verified.

Example 3.4 Let R denote the set of all real numbers and $\tau = \{\emptyset, \{r\}, R\}$ where r is an arbitrary rational number. Then it is easy to see that

$$IntClQ^c = Int(R \setminus \{r\}) = \emptyset$$
 and $ClIntQ = Cl(\{r\}) = R$,

$$Int_{\omega}ClQ^{c} = Int_{\omega}(R \setminus \{r\}) = R \setminus \{r\} \text{ and } Cl_{\omega}IntQ = Cl_{\omega}(r\}) = \{r\},\$$

$$IntCl_{\omega}Q^{c} = Int(R \setminus \{r\}) = \emptyset$$
 and $ClInt_{\omega}Q = Cl(r\}) = R$,

$$Int_{\omega}Cl_{\omega}Q^{c} = Int_{\omega}(R\backslash\{r\}) = R\backslash\{r\} \text{ and } Cl_{\omega}Int_{\omega}Q = Cl_{\omega}(r\}) = \{r\},\$$

Let $A = Q^c$ and B = Q. Then from the above we see that

IntClA=
$$\varnothing \neq R \setminus \{r\} = Int_{\omega}ClA$$
 and ClIntB = $R \neq \{r\} = Cl_{\omega}IntB$,

$$IntCl_{\omega}A = \emptyset \neq R \setminus \{r\} = Int_{\omega}ClA \text{ and } ClInt_{\omega}B = R \neq \{r\} = Cl_{\omega}IntB,$$

$$IntCl_{\omega}A = \emptyset \neq R \setminus \{r\} = Int_{\omega}Cl_{\omega}A$$
 and $ClInt_{\omega}B = R \neq \{r\} = Cl_{\omega}Int_{\omega}B$,

Thus (iii), (iv) and (v) in the above remark are verified.

The above discussion motivates to define different types of b-open sets. Andrijevic had chosen the pair (IntCl, ClInt) to define the notion of b-open sets. Noiri et.al. took the pair (Int_{ω}Cl , ClInt_{ω}) to introduce the notion of b- ω -open sets. The other pairs can also be chosen to define some topological sets that are very close to an open set or ω -open set. The two level operators IntCl₀ and Cl₀Int are used to define certain topological sets as given in the next definition.

Definition 3.5 The set A is called

- (i) regular ω^* -open if $A = IntCl_{\omega}A$,
- (ii) semi-ω*-open if A⊂Cl_ωIntA,
- pre- ω^* -open if $A \subset IntCl_{\omega}A$, (iii)
- b- ω *-open if A⊆ IntCl $_{\omega}$ A \cup Cl $_{\omega}$ IntA. (iv)

The three level operators IntCl_{\omega} Int and Cl_{\omega}Int Cl_{\omega} are used to define some topological sets as given in the next definition.

Definition 3.6 The set A is called

 α - ω *-open if $A \subset IntCl_{\omega} IntA$. (i)

2326-9865

ISSN: 2094-0343

(ii) β - ω *-open if $A \subset Cl_{\omega}$ Int $Cl_{\omega}A$.

Remark 3.7 It is worthwhile to see that regular ω^* -open, semi- ω^* -open, pre- ω^* -open, b- ω^* -open , α - ω^* -open and β - ω^* -open sets are defined by replacing "Cl "by "Cl $_\omega$ " in the definitions of regular open, semi-open, pre-open, b-open , α -open and β -open sets respectively.

The complements of the regular ω^* -open , semi- ω^* -open, pre- ω^* -open, b- ω^* -open , α - ω^* -open , β - ω^* -open are called regular ω^* -closed, semi- ω^* -closed, pre- ω^* -closed, b- ω^* -closed respectively. Such weak forms of ω^* -closed sets are characterized in the next proposition.

Proposition 3.8 The set A is

- (i) regular ω^* -closed $\Leftrightarrow A = ClInt_{\omega}A$,
- (ii) semi- ω^* -closed \Leftrightarrow Int ω ClA \subseteq A,
- (iii) pre- ω *-closed in $(X,\tau) \Leftrightarrow ClInt_{\omega}A \subset A$,
- (iv) $b-\omega^*$ -closed in $(X,\tau) \Leftrightarrow Int_\omega ClA \cap ClInt_\omega A \subset A$.
- (v) α - ω *-closed in $(X,\tau) \Leftrightarrow ClInt_{\omega} ClA \subseteq A$.
- (vi) β - ω *-closed in $(X,\tau) \Leftrightarrow Int_{\omega} Cl Int_{\omega} A \subseteq A$.

Proof. The set A is regular ω^* -closed $\Leftrightarrow X \setminus A$ is regular ω^* -open.

- \Leftrightarrow X\A = IntCl_{\omega}(X\A).
- \Leftrightarrow X\A = X\ ClInt_{\omega}A.
- \Leftrightarrow A = ClInt_{\omega}A.

This proves (i). The set A is α - ω *-closed \Leftrightarrow X\A is α - ω *-open.

- \Leftrightarrow X\A \subseteq IntCl_{\omega}Int (X\A).
- $\Leftrightarrow X \setminus A \subset X \setminus ClInt_{\omega}ClA.$
- \Leftrightarrow A \supset ClInt $_{\omega}$ ClA.
- \Leftrightarrow ClInt_{ω} ClA \subseteq A.

This proves (v) and the other assertions can be analogously proved.

Remark 3.9 The concepts of regular ω^* -closed, semi- ω^* -closed, pre- ω^* -closed,

b- ω^* -closed, α - ω^* -closed and β - ω^* -closed sets can also be defined replacing "Int " by "Int $_{\omega}$ " in the definitions of regular closed, semi-closed, pre-closed, b-closed and β -closed sets respectively.

The next proposition gives specific formulas to verify whether a given set A is regular- ω*open, regular ω^* -closed, semi- ω^* -open, semi- ω^* -closed, β - ω^* -open, β - ω^* -closed.

Proposition 3.10 The set A is

- regular ω^* -open $\Leftrightarrow A = IntCl_{\omega}IntA$, (i)
- (ii) regular ω^* -closed $\Leftrightarrow A = ClInt_{\omega}ClA$,
- (iii) semi- ω^* -open \Leftrightarrow Cl $_{\omega}A =$ Cl $_{\omega}$ IntA,
- (iv) semi- ω^* -closed \Leftrightarrow Int ω ClA = Int ω A,
- (v) β - ω *-open \Leftrightarrow Cl $_{\omega}$ A =Cl $_{\omega}$ Int Cl $_{\omega}$ A,
- β-ω*-closed \Leftrightarrow Int_ω Cl Int_ωA= Int_ωA. (vi)

Proof. The set A isregular ω^* -open \Rightarrow A= IntCl $_{\omega}$ A and A is open. \Rightarrow A= IntCl $_{\omega}$ IntA. Now $A = IntCl_{\omega}IntA \implies IntA = IntCl_{\omega}IntA$ and A is open $\implies A = IntCl_{\omega}A$.

This proves (i) and the proof for (ii) is analogous.

The set A is semi- ω^* -open $\Rightarrow A \subseteq Cl_{\omega}IntA$

- \Rightarrow A \subset Cl $_{\omega}$ IntA \subset Cl $_{\omega}$ A.
- \Rightarrow Cl_{\omega}A \subseteq Cl_{\omega}Cl_{\omega}IntA \subseteq Cl_{\omega}A.
- \Rightarrow Cl $_{\omega}$ A \subset Cl $_{\omega}$ IntA \subset Cl $_{\omega}$ A.
- \Rightarrow Cl_{\omega}A =Cl_{\omega}IntA.

Conversely, $Cl_{\omega}A = Cl_{\omega}IntA \implies A \subseteq Cl_{\omega}A = Cl_{\omega}IntA$

- ⇒ A⊂Cl_ωIntA
- \Rightarrow A is semi- ω^* -open

This proves (iii) and the proof for (iv) is analogous.

The set A is β - ω *-open $\Rightarrow A \subset Cl_{\omega}Int Cl_{\omega}A$

- \Rightarrow A \subseteq Cl $_{\omega}$ Int Cl $_{\omega}$ A \subseteq Cl $_{\omega}$ A.
- \Rightarrow Cl_{\omega}A\cup Cl_{\omega}Cl_{\omega}Int Cl_{\omega}A\cup Cl_{\omega}A.
- \Rightarrow Cl_{\omega}A \subset Cl_{\omega}Int Cl_{\omega}A \subset Cl_{\omega}A.
- \Rightarrow Cl_{\omega}A = Cl_{\omega}Int Cl_{\omega}A.

Conversely, $Cl_{\omega}A = Cl_{\omega}Int Cl_{\omega}A \Rightarrow A \subseteq Cl_{\omega}A = Cl_{\omega}Int Cl_{\omega}A$

- \Rightarrow A \subset Cl $_{\omega}$ Int Cl $_{\omega}$ A
- \Rightarrow A is β ω *-open

This proves (iv) and the proof for (v) is analogous.

Proposition 3.11 Let A be regular ω^* -open.

- (i) A is open, pre-open, pre- ω -open in (X,τ) and
- (ii) A is pre-open in (X, τ_{ω})

Proof. The set A is regular ω^* -open \Rightarrow A= IntCl $_{\omega}$ A \subset IntClA \subset Int $_{\omega}$ ClA.

 \Rightarrow A is open, pre-open, pre- ω -open in (X,τ) .

This proves (i).

A is regular ω^* -open \Rightarrow A= IntCl $_{\omega}$ A \subseteq Int $_{\omega}$ Cl $_{\omega}$ A.

 \Rightarrow A is pre-open in (X, τ_{ω}) .

This proves (ii).

Proposition 3.12 Let A be semi- ω^* -open.

- (i) A is semi-open, semi- ω -open in (X,τ) and
- (ii) A is semi-open in (X, τ_{ω}) .

Proof. The set A is semi- ω^* -open in $(X,\tau) \Rightarrow A \subseteq Cl_{\omega} IntA \subseteq ClIntA \subseteq ClInt_{\omega}A$

 \Rightarrow A is semi-open, semi- ω -open in (X,τ) .

This proves (i).

The set A is semi- ω^* -open in $(X,\tau) \Rightarrow A \subset Cl_{\omega}IntA \subset Cl_{\omega}Int_{\omega}A$.

 \Rightarrow A is semi-open in (X, τ_{ω}) .

This proves (ii).

Proposition 3.13 Let A be pre- ω^* -open.

- (i) A is pre-open, pre- ω -open in (X,τ) and
- (ii) A is pre-open in (X, τ_{ω}) .

Proof. The set A is pre- ω^* -open in $(X,\tau) \Rightarrow A \subseteq IntCl_{\omega}A \subseteq IntClA \subseteq Int_{\omega}ClA$.

 \Rightarrow is pre-open, pre- ω -open in (X,τ) .

This proves (i).

The set A is pre- ω^* -open in $(X,\tau) \Rightarrow A \subset Cl_{\omega}IntA \subset Cl_{\omega}Int_{\omega}A$.

 \Rightarrow A is semi-open in (X, τ_{ω}) .

This proves (ii).

Proposition 3.14 Let A be b- ω^* -open.

- (i) A is b-open, b- ω -open in (X,τ) and
- (ii) A is b-open in (X, τ_{ω}) .

Proof: The set A is b- ω^* -open in $(X,\tau) \Rightarrow A \subset Cl_{\omega} IntA \cup IntCl_{\omega}A$.

 \subset ClIntA \cup IntClA \subset ClInt $_{\omega}$ A \cup Int $_{\omega}$ ClA.

 \Rightarrow A is b-open, b- ω -open in (X,τ) .

This proves (i).

The set A is b- ω^* -open in $(X,\tau) \Rightarrow A \subset Cl_{\omega} IntA \cup IntCl_{\omega}A \subset Cl_{\omega} Int_{\omega}A \cup Int_{\omega}Cl_{\omega}A$.

 \Rightarrow A is b-open in (X, τ_{ω}) .

This proves (ii).

Proposition 3.15 Let A be α - ω *-open in (X,τ) .

- (i) A is pre- ω^* -open, pre-open, semi- ω^* -open, semi-open, α -open, β - ω^* -open in (X,τ) and
- (ii) A is pre-open, semi-open, α -open in (X, τ_{ω}) .

Proof. The set A is α - ω *-open in $(X,\tau) \Rightarrow A \subset IntCl_{\omega}IntA \subset IntCl_{\omega}A \subset IntCl_{\Delta}$,

 $A \subseteq IntCl_{\omega}IntA \subseteq Cl_{\omega}IntA \subseteq Cl IntA$,

A⊂IntCl IntA and

 $A \subset IntCl_{\omega}IntA \subset Cl_{\omega}IntCl_{\omega}IntA \subset Cl_{\omega}IntCl_{\omega}A$

 \Rightarrow A is pre- ω^* -open, pre-open, semi- ω^* -open, semi-open, α -open, β - ω^* -open in (X,τ)

This proves (i).

The set A is α - ω *-open in $(X,\tau) \Rightarrow A \subseteq IntCl_{\omega}IntA$

 \Rightarrow A \subseteq Int $_{\omega}$ Cl $_{\omega}$ A, A \subseteq Cl $_{\omega}$ Int $_{\omega}$ A,

 $A \subset Int_{\omega}Cl_{\omega} Int_{\omega}A$.

 \Rightarrow A is pre-open, semi-open, α -open in (X, τ_{ω}) . This proves (ii).

Proposition 3.16 If A is β - ω *-open in (X,τ) , then A is β -open in (X,τ) and in (X,τ_{ω}) .

Proof. The set A is β - ω *-open in $(X,\tau) \Rightarrow A \subset Cl_{\omega}$ Int $Cl_{\omega}A$

 \Rightarrow A \subseteq Cl Int ClA and A \subseteq Cl $_{\omega}$ Int $_{\omega}$ Cl $_{\omega}$ A

 \Rightarrow A is β -open in (X,τ) as well as in (X,τ_{ω}) .

Proposition 3.17 If A is regular ω^* -closed then it is closed, pre-closed, pre- ω -closed in (X,τ) and is pre-closed in (X,τ_{ω}) .

Proof. The set A is regular ω^* -closed $\Rightarrow X \setminus A$ is regular ω^* -open.

- \Rightarrow X\A is open, pre-open, pre- ω -open in (X,τ) and pre-open in (X,τ_{ω}) .
- \Rightarrow A is closed, pre-closed, pre- ω -closed in (X,τ) and pre-closed in (X,τ_{ω}) .

Proposition 3.18 If A is semi- ω^* -closed, then it is semi-closed, semi- ω - closed in (X,τ) and semi-closed in (X, τ_{ω}) .

Proof. The set A is semi- ω^* -closed in $(X,\tau) \Rightarrow X \setminus A$ is semi- ω^* -open.

- \Rightarrow X\A is semi-open, semi- ω -open in (X, τ) and semi-open in (X, τ_{ω})
- \Rightarrow A is semi-closed, semi- ω -closed in (X,τ) and semi-closed in (X,τ_{ω}) .

Proposition 3.19 If A is pre- ω^* -closed, then it is pre-closed, pre- ω -closed in (X,τ) and preclosed in (X, τ_{ω}) .

Proof. The set A is pre- ω^* -closed in $(X,\tau) \Rightarrow X \setminus A$ is pre- ω^* -open.

- \Rightarrow X\A is pre-open, pre- ω -open in (X, τ) and semi-open in (X, τ_{ω}).
- \Rightarrow A is pre-closed, pre- ω -closed in (X,τ) and semi-closed in (X,τ_{ω}) .

Proposition 3.20 If A is b- ω^* -closed then it is b-closed, b- ω -closed in (X,τ) and b-closed in $(X,\tau_{\omega}).$

Proof. The set A is b- ω^* -closed in $(X,\tau) \Rightarrow X \setminus A$ is b- ω^* -open.

- \Rightarrow X\A is b-open, b-\omega-open in (X,\tau) and b-open in (X,\tau_\omega).
- \Rightarrow A is b-closed, b- ω -closed in (X,τ) and b-closed in (X,τ_{ω}) .

Proposition 3.21 If A is α - ω *-closed in (X,τ) , then it is closed, pre- ω *- closed, pre-closed, semi- ω^* -closed, semi-closed, α -closed, β - ω^* -closed in (X,τ) and is pre-closed, semi-closed, α -closed in (X, τ_{ω}) .

Proof. The set A is α - ω *-closed in $(X,\tau) \Rightarrow X \setminus A$ is α - ω *-open.

- \Rightarrow X\A is pre- ω *-open, pre-open, semi- ω *-open, semi-open, α -open, β - ω *-open in (X, τ) and pre-open, semi-open, α -open in (X, τ_{ω})
- \Rightarrow A is pre- ω *-closed, pre-closed, semi- ω *-closed, semi-closed, α -closed,

 β - ω *-closed in (X,τ) and pre-closed, semi-closed, α -closed in (X,τ_{ω}) .

Proposition 3.22 If A is β-ω*-closed in (X,τ) then A is β-closed in (X,τ) and also β-closed in (X,τ_{ω}) .

Proof. The set A is β - ω *-closed in $(X,\tau) \Rightarrow X \setminus A$ is β - ω *-open.

 \Rightarrow X\A is β -open in (X,τ) and in (X,τ_{ω}) .

 \Rightarrow A is β -closed in (X,τ) and in (X,τ_{ω}) .

Proposition 3.23 Let A and B be any two subsets of a space X.

- (i) If A and B are regular ω^* -open in (X,τ) then $A \cap B$ is regular ω^* -open.
- (ii) If A and B are ρ - ω *-open in (X,τ) then $A \cup B$ is ρ - ω *-open.
- (iii) If Aand B are regular ω^* -closed in (X,τ) then $A \cup B$ is regular ω^* -closed.
- (iv) If A and B are ρ - ω *-closed in (X,τ) then $A \cap B$ is ρ - ω *-closed.

Proof. Let A, B be regular ω^* -open in (X,τ) . Then $IntCl_{\omega}A=A$ and $IntCl_{\omega}B=B$ that implies $IntCl_{\omega}(A\cap B)\subseteq Int(Cl_{\omega}A\cap Cl_{\omega}B)=Int\ Cl_{\omega}A\cap$ Int $Cl_{\omega}B=A\cap B\subseteq Cl_{\omega}(A\cap B)$ so that $IntCl_{\omega}(A\cap B)\subseteq Int(A\cap B)=A\cap B\subseteq IntCl_{\omega}(A\cap B)$ which further implies that $IntCl_{\omega}(A\cap B)=A\cap B$. Therefore $A\cap B$ is regular ω^* -open. This proves (i) and the assertion (iii) follows from (i).

Now, let A, B be semi- ω^* -open in (X,τ) . Then $Cl_{\omega}IntA = Cl_{\omega}A$ and

 $Cl_{\omega}IntB = Cl_{\omega}B$.

 $Cl_{\omega}Int(A \cup B) \supseteq Cl_{\omega}(Int \ A \cup Int \ B \) = Cl_{\omega}Int \ A \cup Cl_{\omega}Int \ B = Cl_{\omega}A \cup Cl_{\omega}B \supseteq A \cup \ B \ that implies A \cup \ B \ is semi-\ \omega^*-open.$

If A and B are pre- ω^* -open in (X,τ) then A \subseteq IntCl $_{\omega}$ A and B \subseteq IntCl $_{\omega}$ B so that

 $IntCl_{\omega}(A \cup B \) = Int(Cl_{\omega}A \cup Cl_{\omega}B \) \ \supseteq Int\ Cl_{\omega}A \cup Int\ Cl_{\omega}B \supseteq A \cup \ B \ that\ implies$

 $A \cup B$ is pre- ω^* -open.

If A and B are α - ω *-open in (X,τ) then $A \subset IntCl_{\omega}$ Int A and $B \subset IntCl_{\omega}$ Int B so that

 $IntCl_{\omega}Int(A \cup B) \supseteq IntCl_{\omega}(IntA \cup IntB) = Int(Cl_{\omega}IntA \cup Cl_{\omega}IntB)$

 \supseteq Int Cl_{ω} Int $A \cup$ Int Cl_{ω} Int $B \supseteq A \cup B$ that implies $A \cup B$ is α - ω *-open.

If A and B are β - ω *-open in (X,τ) then A \subseteq Cl $_{\omega}$ IntCl $_{\omega}$ A and B \subseteq Cl $_{\omega}$ IntCl $_{\omega}$ B so that

 $Cl_{\omega}IntCl_{\omega}\left(A \cup B\right.) = Cl_{\omega}Int\left(Cl_{\omega}A \cup Cl_{\omega}B\right.) \supseteq Cl_{\omega}(Int\ Cl_{\omega}A \cup Int\ Cl_{\omega}B)$

 $= Cl_{\omega}Int Cl_{\omega}A \cup Cl_{\omega}Int Cl_{\omega}B$

 $\supseteq A \cup B$ that implies $A \cup B$ is β - ω *-open.

If A and B are b- ω^* -open in (X,τ) then $A \subset IntCl_{\omega}A \cup Cl_{\omega}IntA$ and

 $B \subset IntCl_{\omega}B \cup Cl_{\omega}IntB$ so that $IntCl_{\omega}(A \cup B) \cup Cl_{\omega}Int(A \cup B)$

- $= Int(Cl_{\omega}A \cup Cl_{\omega}B) \cup Cl_{\omega}Int(A \cup B)$
- $\supset Int(Cl_{\omega}A \cup Cl_{\omega}B) \cup Cl_{\omega}(Int A \cup B)$
- \supseteq (Int $Cl_{\omega}A \cup IntCl_{\omega}B) \cup Cl_{\omega}(Int A \cup Int B)$
- = (Int $Cl_{\omega}A \cup IntCl_{\omega}B$) \cup ($Cl_{\omega}Int A \cup Cl_{\omega}Int B$)
- = (Int $Cl_{\omega}A \cup Cl_{\omega}Int A$) \cup (Int $Cl_{\omega}B \cup Cl_{\omega}Int B$)
- $\supset A \cup B$ that implies $A \cup B$ is b- ω^* -open. This proves (ii) and the assertion (iv) can be analogously proved.

REFERENCES

- 1. Andrijevic D, 'Semi-pre-open sets', Math. Vesnik, vol. 38(1986), pp.24-32.
- 2. Andrijevic D, 'On b-open sets', Mat. Vesnik, vol. 48(1996), pp. 59-64.
- 3. Arya SP and Nour TM, 'Characterizations of s-normal Spaces', Indian. J. Pure. Appl. Math., vol.19(1988),pp.42-50.
- 4. Chattopadhyay C and Bandyopadhyay C, 'On structure of δ-sets', Bulletin of Calcutta Mathematical Society, vol. 83(1991), pp. 281-290.
- 5. Chattopadhyay C and Roy UK, 'δ-sets, irresolvable and resolvable spaces', Mathematica Slovaca, vol. 42(1992), pp. 371-378.
- 6. Chiralekha R, Anitha M and Meena N, 'Near and closer relations in topology' Malaya Journal of Metematik, vol.8, no.4 (2020),pp.2169-2172.
- 7. Chiralekha R, 'On b-open sets, near and closer relations in topology and related concepts' Ph.D thesis, Manonmniam Sundaranar University, India.(2021),
- 8. Dontchev J, 'On generalizing semi-pre-open sets', Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., vol 16(1995),, pp.36 - 48.
- 9. Gnanambal Y, 'On generalized pre regular closed sets in topological spaces', Indian J. Pure. Appl. Math., vol.28(1997),pp.351 - 360.
- 10. Dhabliya, D., & Sharma, R. (2019). Cloud computing based mobile devices for distributed computing. International Journal of Control and Automation, 12(6 Special Issue), 1-4. doi:10.33832/ijca.2019.12.6.01
- 11. Dhabliya, D., Soundararajan, R., Selvarasu, P., Balasubramaniam, M. S., Rajawat, A. S., Goyal, S. B., . . . Suciu, G. (2022). Energy-efficient network protocols and resilient data transmission schemes for wireless sensor Networks—An experimental survey. Energies, 15(23) doi:10.3390/en15238883
- 12. Dhanikonda, S. R., Sowjanya, P., Ramanaiah, M. L., Joshi, R., Krishna Mohan, B. H., Dhabliya, D., & Raja, N. K. (2022). An efficient deep learning model with interrelated tagging prototype with segmentation for telugu optical character recognition. Scientific Programming, 2022 doi:10.1155/2022/1059004

- 13. Jain, V., Beram, S. M., Talukdar, V., Patil, T., Dhabliya, D., & Gupta, A. (2022). Accuracy enhancement in machine learning during blockchain based transaction classification. Paper presented at the PDGC 2022 2022 7th International Conference on Parallel, Distributed and Grid Computing, 536-540. doi:10.1109/PDGC56933.2022.10053213 Retrieved from www.scopus.com
- 14. Indira T & Rekha K, 'Applications of *b-open sets and **b-open sets in topological spaces' Annals of Pure and Applied Mathematics, vol.1, no.1(2012), pp.44-56.
- 15. Indira T & Rekha K,'Decomposition of Continuity via *b-open Set', Acta Ciencia Indica, Vol.39 M, no.1(2013),pp. 73-85.
- 16. Levine N, 'On the commutativity of the interior and closure operators in topological spaces', Amer.Math.Monthly, vol.68(1961),pp.474-477.
- 17. Levine N,'Semiopen Sets and Semi Continuity in Topological Spaces', Amer.Math.Monthly, vol.70(1963), pp. 36-41.
- 18. Levine N, 'Generalized closed sets in topology', Rend. Circ. Mat. Palermovol.19, no.2(1970), pp. 89-96.
- 19. Maki H, Umehara J and NoiriT, 'Every topological space is pre- T_{1/2}', Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. vol.17(1996),pp.33 42.
- 20. Maki H, Balachandran K and Devi R, 'Generalized α-closed sets in topology', Bull. Fukuoka Univ. Ed part III, vol.42(1993),pp.13 21.
- 21. Maki H, Balachandran K and Devi R, 'Associated topologies of generalized α-closed sets and α-generalized closed sets', Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., vol.15 (1994), pp.57 63.
- 22. Mashhour AS, Abd El-Monsef ME & El-Deeb SN, 'On Pre-Continuous and Weak Pre-Continuous Functions', Proc. Math. Phys. Soc. Egypt, vol. 53(1982), pp. 47-53.
- 23. Murugesan S, ' On R ω -open sets' , Journal of Advanced Studies in Topology, vol.5, no.3(2014), pp.24-27.
- 24. Nagaveni N, 'Studies on Generalizations of Homeomorphisms in Topological spaces', Ph.D. Thesis, Bharathiar University, Coimbatore(1999),.
- 25. Palaniappan N and Rao KC, 'Regular generalized closed sets', Kyungpook Math. J., vol.33(1993), pp. 211 219.
- 26. Samer Al Ghour, Souad Al-Zoubi, 'A new class between theta open sets and theta omega open sets', Heliyon, vol.7(2021), pp. 1-11.
- 27. Stone MH, 'Application of the Theory of Boolean Rings to the General Topology', Trans. A.M.S.,vol. 41(1937), pp. 375-481.
- 28. Takashi Noiri, 'Super Continuity and Some Strong Forms of Continuity', Indian J.Pure Appl.Math.,vol.15, no. 3(1984),pp. 241-250.
- 29. Thamizharasi G, 'Studies in Bitopological Spaces', Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli, TN, India.(2010),
- 30. Thangavelu P & Rao KC, 'p-sets in Topological Spaces', Bulletion of Pure and Applied Sciences, vol.21E, no. 2(2002),, pp. 341-355.
- 31. Thangavelu P & Rao KC,' q-sets in Topological Spaces', Prog.of Maths, vol.36, no. 1&2(2002),, pp. 159-165.

2326-9865

- 32. Usha Parameswari R,'A Study on Generalization of b-Open Sets and Related Concepts in Topology', Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli- 12, India.(2015),
- 33. Usha Parameswari R& Thangavelu P, 'On b#-open Sets', International Journal of Mathematics Trends and Technology, vol. 5, no. 3(2014), pp. 202-218.