Mathematical Model of FYTHD Branching type with Hyphal Death

Tamadhir Jafaar Kadhim Al_Dahan¹, Prof. Dr. Ali Hussein Shuaa Al_Taie²

¹College of Education for Pure Sciences || Wasit University || Wasit || Iraq || 52001 || ²College of Education for Pure Sciences || Wasit University || Wasit || Iraq || 52001 ||

> ¹Email: <u>tamadirja1011@uowasit.edu.iq</u> ²Email: <u>alishuaa@uowasit.ed.iq</u>

Article Info	Abstract
Page Number: 1729 - 1735	The teaching of models in biology is what gave rise to this study. to
Publication Issue:	address challenges they are acquainted with a fresh perspective, to
Vol 72 No. 1 (2023)	mentally generate a precise model, to translate it into mathematical words.
	This paper about mathematical model show behavior for growth of Lateral
	branching, Dichotomous branching, Tip death , Tip-hypha anastomosis
	with Haphal death . Despite the fact that there is an error ratio,
	mathematical modeling often decreases the amount of effort, time, and
	money needed to get the intended outcome. With the aid of a solution to a
	system of partial equations (PDEs), we will study the mathematical model
	of branching. The conclusions will show whether the tested fungus species
	grew successfully or not and in the numerical analysis, we applied a few
	symbols (pplane8, Pdepe).
Article History	
Article Received: 15 October 2022 Revised: 24 November 2022 Accepted: 18 December 2022	Keywords: Lateral branching, Dichotomous branching, Tip deat, Tip_hypha anastomosis

Introduction :For the development of fungus mycelia, we created new models. Table (1) presents a number of mathematically analyzed biological kinds along with an explanation of how they work and a list of their parameters. In this article, multiple fungus species will be combined [1].

Biological type	Symbol	Version	Parameters description
Lateral	F	$\delta = \alpha_2 p$	α ₂ is the number of branches produced
branching			per unit length hypha per unit time.
Dichotomous	Y	$\delta = \alpha_1 n$	α_1 is the number of tips produced per
branching			tip per unit time.
	Т	$\delta = -\alpha_3 n$	α_3 is the loss rate of tips (constant for
Tip death			tip death).
Tip-hypha	H	$\delta = -\beta_1 n^2$	β_1 is the rate of tip reconnections per
anastomosis		-	unit time.
Haphal death	D	d=y ₁ p	γ_1 is the loss rate of hyphal (constant
_			for hyphal death).

Table (1): Illustrate branching, Biological type, Symbol of this type and version

1-Mathematical Model

We'll investigate a different branching form Mathematical Model for fungal that includes hyphal death. Characterization of the fungus biologically: Mathematicians discovered that the fungi's branches may be transformed into letters, and that these letters rely on the species' behavior in terms of p= density of the hypha per unit area and filament length ,n = tip density. Our model includes a different type of fungus branching and with fungus death is Lateral branching with Dichotomous Branching Tip death with Tip-hypha anastomosis with Hyphal death (FYTHD) We can describe hyphal growth by the system below The model system of this type is [2,3,4]:

$$\frac{\partial \mathbf{p}}{\partial t} = nv - dP$$
$$\frac{\partial \mathbf{n}}{\partial t} = \frac{-\partial \mathbf{n}v}{\partial \mathbf{x}} + \sigma(p, n) \tag{1}$$

Where $\sigma(p, n) = \alpha 2p + \alpha 1n - \alpha 3n - \beta 2np$

Then this system (1) becomes[5]:

 $\frac{\partial p}{\partial t} = n - p$ $\frac{\partial n}{\partial t} = \alpha p + \alpha n - \beta n + \beta n p \qquad (2)$

2-Non-dimensionlision and Stability

We will apply the non-dimensional form for the equations to aid in the analysis and numerical solution of the system (2). Ali H. Shuaa Al-Taie (2011) clear up how can put these parameters as dimensionlision less[1]

$$\frac{\partial p}{\partial t} = n - p$$

$$\frac{\partial n}{\partial t} = \alpha (p + n) - \beta n (1 + p) \qquad (3)$$
Where $\alpha = \frac{\alpha_1}{\gamma}, \beta = \frac{\alpha_3}{\gamma}$

We shall show or study the stability of the system to solve the above system as a stable solution.

$$\frac{\partial \rho}{\partial t} = n - \rho = 0 \rightarrow n = \rho$$
 (4)

$$\frac{\partial n}{\partial t} = \alpha (\rho + n) - \beta n (1 + \rho) = 0$$
(5)

$$P = 0 \text{ then } (\rho, n) = (0,0)$$
and
$$\rho = \frac{2\alpha - \beta}{\beta} \text{ then } (p,n) = (\frac{2\alpha - \beta}{\beta}, \frac{2\alpha - \beta}{\beta})$$
So that the steady state are $(\rho, n) = (0,0)$
and $(p, n) = (1,1)$

Therefor we take the Jacobin of these equations(4,5)

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

$$J(p,n) = \begin{bmatrix} -1 & 1\\ \alpha - \beta n & \alpha - \beta(1+p) \end{bmatrix}$$

Now, determent the eigenvalues as λ_i ; i= 1,2

In This Situation, we'll Consider this point (0,0) is saddel point

And the point $(\frac{2\alpha-\beta}{\beta}, \frac{2\alpha-\beta}{\beta})$ stable spiral

For all $\alpha, \beta > 0$ such that $\alpha > \beta$, see fig (1) using **MATLAP** pplane 8

Figure 1: the (n,p) – plane , note that atrajectory connects the Saddle point at (0,0) and stable spiral at $(\frac{2\alpha-\beta}{\beta}, \frac{2\alpha-\beta}{\beta})$ For all $\alpha = 1.2$ and $\beta = 1$

3-Traveling wave solution

We shall discuss the travelling wave solution in this section let z = x - ct, and we impose

$$n(x, t) = N(z)$$

 $p(x, t) = P(z)$ (6)

where P(z) indicate to density profiles, and (c) rate of propagation of colony. N(z) and P(z) positive and are moves at constant speed wave c in function for (z) The function N(x,t), p(x,t) are traveling positive x – direction where c > 1 and $\alpha = \beta = 1$ We appearance the traveling wave solution of the system in t and t in the form(4,5)

$$\frac{\partial p}{\partial t} = -c \frac{\partial P}{\partial z'} \qquad \qquad \frac{\partial n}{\partial t} = -c \frac{\partial N}{\partial z'} \qquad \qquad \frac{\partial n}{\partial t} = \frac{\partial N}{\partial z}$$

Therefore becomes the system

$$\frac{\partial P}{\partial z} = \frac{-1}{c} [N-P]$$
(7)
$$\frac{\partial N}{\partial Z} = \frac{1}{1-c} [\alpha (P+N) - \beta N (1+P)], c \neq 1, -\infty < z < \infty$$

We study the steady states of the system (7), we get the saddle point (p,n)=(0,0)

Figure 2. The (N,P) plane not that atrajestory connects Unstable spiral $(\frac{2\alpha-\beta}{\beta}, \frac{2\alpha-\beta}{\beta})$ to a saddle point at (0,0) for all c > 1 such that $\alpha = 1.2$ and $\beta = 1$

4-Numerica Solution

We turn to numerical solutions because the system cannot be solved, and we employ **MATLAB** in this case. pdepe code will be used to solve the system (3)

Figure 3. the initial condition of solution to the system (3) with the parameter $\alpha = 2$ and $\beta = 1$

Figure 4: solution to the system (3) with parameters s $\alpha = 2$ and $\beta = 1$ The wave speed c= 13.1145. where the blue line represent tips (n) ,the red line represent branches (p)

Figure 5: Tips were represented by the blue line (n).

Figure 6: Branches were represented by the red line (p).

The association between traveling wave solution c and parameter α was determined in this study, where traveling wave increasing anytime the values of α increase [2,7] See Fig(7)

1.		• • • •	c value	u anu c	101 8	olution o	i inc iyp				
α	0.5	1	2	3	4	5	6	7	8	9	10
С	0.6	2	13.11	32.86	61	97.54	142.33	195.36	256.63	326.12	403.54
	400		12	5		15	6	*			
	350 -						/	* -			
	300 -						*	_			
T						/	*				
speed	250 -					*		-			
Nave	200 -				×	<		-			
J	150 -			*				-			
	100 -			*							
	100		*								
	50 -	*						α.			
	×		L	E		E.	E.				
	1		1.2	1.4	1	1.6	1.8	2			

Table 2: the value α and c for solution of the type FYTHD

Figure 7: Illustrates the relation between the value α, and waves speed c

Now we consider the relationship between the parameter β and the traveling wave speed c, where the traveling wave decreases as the values of β rise. See Fig (8)

Т.	ant	5. the	value of	p anu v	c 101 301		the ty	perin	ΠD			
	β	0.5	1	2	3	4	5	6	7	8	9	10
	с	8.67	8.04	7.52	7.03	6.63	6.3	5.78	5	4.53	4.02	3.5

Figure 8: The relation between traveling wave c and parameter .

Consider a connection between the value v and the traveling wave speed c, where the wave speed rises as v rises.See Fig (9).

Тя	hle	4.	the	value	of v	and	c for	solution	of	the	type	FVTH	Ð
10	inte	4.	une	value	UIV	anu	CIUI	Solution	UI	une	type	F I I I	\mathbf{D}

v	0.5	1	2	3	4	5	6	7	8	9	10
с	0.79	2.04	5.52	10.04	15.43	21.57	28.38	35.8	43.82	52.3	61.41

Figure 9: The relation between traveling wave c and value v

Finally, we examine the relationsbetween traveling wave c and value d, noting that the wave speed decreases as d values rise. view Fig (10)

d	0.5	1	2	3	4	5	6	7	8	9	10	
c	4.58	2.04	0.86	0.51	0.36	0.27	0.21	0.18	0.15	0.13	0.11	

Figure 10: The relation between traveling wave c and value d.

5-Conclusion

Based on the aforementioned findings, we deduced that the traveling wave c increases whenever the values of α rise, see Fig (6) and we see that the traveling wave decreases as the values of β grow, see Fig (7) and we observe that the traveling wave grows as the values of v grow, see Fig (8), and lastly, if the values of d grow, the traveling wave decreases .see Fig (9). Since: $\alpha = \frac{\alpha_1}{\gamma}$ and $\beta = \frac{\alpha_3}{\gamma}$, There fore the growthrate is increasing with α_1 while keeping γ fixed, and the growthrate decreasing with α_3 , while keeping γ fixed.

Reference

- [1] Al_Taie, A. H., Energy Consumption of Lateral Branching, Tip death due to overcrowding, with Exponential Function(2018).
- [2] Michael J. Markowski, Modeling behavior in vehicular and pedestrian traffic flow(2008).
- [3] Murray J.D. Mathematical Biology II :Spatial Models and biomedical. Verlag New York-Application. Springer (1989).
- [4] William Boyce and Richard Diprima. Elementary Differential Equations and Boundary Value Problems. John Wiley & Sons Ltd. Hoboken, N.J, eight edition. (2005).
- [5] Dennis G.Zill. AFirst Course in Differential Equations with Modeling Application, Tenth edition, Brooks/Cole, United State of America. (2012).
- [6] Rovniak, David, Avogadro's hypothesis, Scientist Wolfram. Retrieved 3 February 2016.
- [7] Rami Achouri (2016) University of Manchester Faculty of Science and Engineering School of Mathematical. Travelling wave solution.