
Vol. 70 No. 1 (2021)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2326-9865

DOI: https://doi.org/10.17762/msea.v70i1.2299

190

Improving the Performance of Primary Storage Systems Using

Leveraging Data Deduplication

Mahantesh K Pattanshetti

Professor, Department of Computer Science, Graphic Era Hill University, Dehradun,

Uttarakhand India 248002

Article Info

Page Number: 190-197

 Publication Issue:

Vol. 70 No. 1 (2021)

Article History

Article Received: 25 January 2021

Revised: 24 February 2021

Accepted: 15 March 2021

Abstract

Data deduplication is a specialised data compression technique used in

computers to get rid of redundant copies of repeated data. Intelligent (data)

compression and single-instance (data) storage are words that are similar

and partly interchangeable. This method may be used to increase storage

efficiency and the quantity of data that has to be sent should be reduced over

networks. Unique data chunks, or byte patterns, are found and saved

throughout the deduplication process through a process of analysis. Recent

studies have demonstrated that main storage systems in the Cloud offer

moderate to high levels of data redundancy. It demonstrates that as a result

of the small I/O requests to redundant data's comparably high temporal

access locality, data redundancy displays a substantially greater degree of

intensity on the I/O path than that on discs. The system in this project

suggests using a performance-oriented I/O deduplication technique known

as POD. It is used to increase the I/O performance of main storage systems

in the Cloud without compromising the latter's capacity savings.

Keywords: Data Deduplication, Primary Storage System, Data

Compression, Single Instance Storage, Storage Efficiency.

1. Introduction

Deduplication can take place "post-process," after the data has been written, or "in-line," as the

data is being processed. Data deduplication is an advanced data compression method used in

computers to get rid of redundant copies of repeated data. Intelligent (data) compression along

with single-instance (data) storage are words that are similar and partly interchangeable. This

method may be used to increase storage efficiency and cutting down on the quantity of data

that needs to be sent over networks. Unique data chunks, or byte patterns, are found and saved

throughout the deduplication process through a process of analysis.

The superfluous chunk is substituted with a brief reference that leads to the saved chunk if a

match is found as the analysis proceeds by comparing more chunks to the stored copy. The

quantity of information that must be saved or communicated can be drastically decreased since

Depending on the chunk size, the identical byte pattern may show up dozens, hundreds, or

possibly thousands of occasions.

Compared to the deduplication carried out by common file-compression programmes like

LZ77 and LZ78, this method of deduplication is distinct. In order to keep just one duplicate of

a big volume of data, storage-based data deduplication inspects the volume and identifies

significant chunks that are similar, such as complete files or substantial sections of files. These

tools only recognise short repeated substrings within individual files. Single-file compression

http://philstat.org.ph/

Vol. 70 No. 1 (2021)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2326-9865

DOI: https://doi.org/10.17762/msea.v70i1.2299

191

methods might be used to further compress this copy. A typical email system, for instance, may

include 100 copies of a single 1-MB (megabyte) file attachment. All 100 copies of the

attachment are preserved whenever the email platform is restored, consuming 100 MB of

storage. Only one duplicate of the file is really stored when data deduplication is used;

subsequent copies are linked to the preserved Approximately 100 copies are made for every

one deduplicated copy.

Comparing data chunks to find duplicates is one of the most popular ways to conduct data

deduplication. Each data chunk is given an identifier for that purpose, which is computed by

the programme often using cryptographic hash methods. The pigeonhole principle prevents

this from always being true, however, in many implementations, it is deemed sufficient if the

identification is the same, the data must also be identical. In contrast, in other implementations

the assumption the similarity between two chunks of data with the same identifier is tested to

ensure that it is true.

Depending on the implementation, the programme will either presume that a certain identifier

exists already in the deduplication namespace or actually verify the identity of the two blocks

of data before replacing the duplicate chunk with a link. Shortening the backup window,

improving storage space economy, and maximising network bandwidth consumption have all

been demonstrated to be possible using data deduplication in cloud backup and archiving

software. To enhance the I/O performance of main storage systems in the Cloud by taking into

account the workload characteristics, we suggest a Performance-Oriented data deduplication

technique, known as POD, as opposed to a capacity-oriented one (such as iDedup). This will

deal with the serious performance problem with cloud main storage as well as the

aforementioned problems brought on by deduplication. POD uses a request-based selective

deduplication technique as part of a two-pronged strategy to boost main storage system

performance while minimising deduplication's performance cost.

2. Literature Survey

This work provides range writes, a straightforward but effective modification to the disc

interface that eliminates the need for block placement micromanagement by the file system.

Range writes allow the disc to choose the request's final on-disk location by letting a file system

define a selection of potential address destinations, which increases efficiency by a factor of

three. This problem has been addressed in the past by shifting to a higher-level object-based

interface or remapping blocks instantly. In order to solve the issue of micromanagement range

writes, this work offers an evolutionary adjustment to the disc interface. The file system gives

the disc a list of potential placement locations so that it may choose one determined by internal

positioning data. Expand-and-cancel scheduling and hierarchical range scheduling, two unique

methods for scheduling range writes, are developed. The simulation demonstrates that both of

these schedulers operate superbly, drastically lowering write latency as the number of targets

rises [1].

When publishing dirty pages to disc or network file systems, Operating system memory

managers fail to consider the number of read vs write pages in the buffer pool or open I/O

http://philstat.org.ph/

Vol. 70 No. 1 (2021)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2326-9865

DOI: https://doi.org/10.17762/msea.v70i1.2299

192

requests into account.Bursty I/O patterns result from this, which slow down data reading

operations and lower storage efficiency. We overcome these constraints by opportunistically

In addition to writing dirty pages to disc before the operating system submits them for write-

back, you may also do this by adjusting how much RAM is allocated across write buffering as

well as read caching. For mixed read/write workloads, the author shows performance increases

of over 30%. To maintain a balance between read as well as write workloads while developing

adaptive destaging techniques that respond to workload, read, write, and free page populations

in memory, operating system memory managers must be improved. For the purpose to lessen

the effects to write traffic on read performance and to enhance disc throughput while increasing

disc throughput, the author defines an adaptive system for destaging dirty pages to disc.

Performance is increased by modern operating systems delaying the writing of dirty memory

buffers to storage. In contrast to read operations, writing actions are less crucial since As a

consequence, a procedure is not disrupted of a write system call. However, there are two

downsides to maintaining the page in volatile memory for an extended length of time [2].

The file system information from more than 60,000 Windows PC file systems in a major

company is examined in this article with regard to temporal changes. It presents a generative

model that describes namespace structure, directory size distribution, and major temporal

patterns related to the frequency of different file kinds, the source of file content, and the way

the namespace is operated, as well as the level of variation between file systems. The data set

contains the most file-system metadata that has ever been gathered also it covers the most time

of any significant metadata collection. The author created a programme that iterates over each

local, fixed-disk file system mounted on a computer's directory tree and captures a snapshot of

all the metadata related to each file or directory, such as name, size, timestamps, and

characteristics. A significant portion of the Microsoft employees were sent the scanning

programme by email, and they were entered into a lottery with each computer they scanned as

an entry. The same file system is also described as having two snapshots that have the same

volume ID, drive letter, user name, machine name, as well as amount of space. The author adds

an abscissa for the zero value in addition to using a logarithmic scale for nonzero values in

order to express these ranges concisely [3].

Inline chunk-based data deduplication systems struggle with chunk fragmentation, which slows

down the pace at which the most recent backup may be restored. To solve this issue, three

methods are investigated: enlarging the cache, container capping, and employing a forward

assembly area. Although employing a forward assembly area lowers container capping lowers

chunk fragmentation but sacrifices some deduplication in order to reduce the amount of RAM

required for a given degree of caching at restoration time. Rearranging chunks can be costly

and has the most impact on most recent backups. The two methods for enhancing restoration

speed in deduplication systems are examined in this research. The first strategy is capping,

which restricts the number of locations that may be accessed each backup MB. The second

strategy is the forward assembly area technique, which develops a novel, more effective

caching and prefetching mechanism for recovering deduplicated data using knowledge of

accesses in advance. The backup programme creates a stream out of the source data and saves

chunks in a number of files referred to as chunk containers. When a fresh piece is received,

http://philstat.org.ph/

Vol. 70 No. 1 (2021)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2326-9865

DOI: https://doi.org/10.17762/msea.v70i1.2299

193

when an open container exceeds a certain size, it is closed and replaced with a new, empty one.

It is appended to the end of the relevant open container [4].

In order to effectively read data for further data analysis, visualisation, checkpoint restart

following a failure, as well as other read-intensive tasks, this study looks at several read-

intensive read-out techniques. It establishes "read" benchmarks to identify the typical read

patterns employed by analytical algorithms and compares experimentally the read performance

seen with various data volumes, organisational structures, along with read process counts. The

findings show that from high to low Data structures that allow for flexibility in data layout and

placement on parallel storage targets are required for high-performance IO, including strategies

that can balance the performance of data writes vs. reads. Experimental evaluations centred

around these patterns measure how well data is presented in two distinct manners, and this

work offers six frequent read patterns for petascale scientific programmes. The second

assessment utilises a log-based data structure, which maximises the quantities of relevant data

received by each read, whereas the first evaluation employs a logically contiguous architecture

suggested by the NetCDF and HDF communities. The benefit of this method is that it

maximises the quantity of usable data collected by each read while taking use of the numerous

storage targets offered by parallel file systems [5].

3. Proposed System

The suggested system includes an I/O deduplication that is focused on performance.

Specifically, the POD (performance-oriented data deduplication) approach. It is suggested to

deal with the significant performance issue of cloud-based main storage. Additionally to lessen

issues brought on by deduplication. By taking into account the workload characteristics, it helps

to optimise the I/O performance of main storage systems in the Cloud.

Fig 1: System Architecture

It incorporates small-I/O-request dominance workload factors into design decisions. If the

write data is already sequentially recorded on the discs, it deduplicates every write request,

including the short write requests that capacity-oriented deduplication techniques would

ordinarily skip. Storage controllers can offer speedy write response times by obscuring disc

delay using non-volatile write-back caches. Effective write cache management is essential for

storage controller performance. The pace of destages must still be taken into account as it is a

crucial component of write caching. Destage at a consistent rate while monitoring the write

cache's usage to avoid under- or over-committing for the optimal performance.

http://philstat.org.ph/

Vol. 70 No. 1 (2021)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2326-9865

DOI: https://doi.org/10.17762/msea.v70i1.2299

194

Analysing data chunks to look for duplicates is how one of the most popular data deduplication

solutions operates. Each data chunk is given an identifier for that purpose, which is computed

by the programme often using cryptographic hash methods. The pigeonhole principle prevents

this from always being true, however, it is often assumed in implementations that if the

identification is the same, the data must be the same as well. Instead than assuming that two

blocks of data with the same identity are similar, some systems actively verify that data with

the same identification is identical. In accordance with the implementation, the software will

either assume that a particular identifier is currently present in the deduplication namespace or

will actually validate the identification of the two blocks of data before replacing the duplicate

chunk with a link.

Fig 2: Flow Diagram

Data deduplication has mostly been utilized to secondary storage systems up to this point.

There are two explanations for this. Data deduplication first needs extra work to find and get

rid of duplicate data. This overhead may have an effect on performance in systems with main

storage. Deduplication is used on secondary data for a second reason: secondary data typically

contains more duplicate data. Particularly backup applications can produce substantial amounts

of duplicate data over time. In some situations when the system architecture doesn't necessitate

http://philstat.org.ph/

Vol. 70 No. 1 (2021)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2326-9865

DOI: https://doi.org/10.17762/msea.v70i1.2299

195

a lot of overhead or have an influence on speed, data deduplication has been implemented

successfully using main storage. The following benefits of the suggested strategy are listed:

• By lowering the user I/O intensity during recovery, it is possible to considerably increase

the performance of online RAID reconstruction.

• It is intended to successfully handle the deduplication-related issues while maintaining the

desirable benefits of data deduplication's capacity to reduce write traffic.

• It can successfully avoid the read amplification issue brought on by deduplication and

reduce write traffic.

• The performance in both reading and writing is greatly improved.

4. Results

By using data deduplication on the I/O channel to eliminate duplicate write requests while also

reducing storage space, this research offers a Performance-Oriented Data Deduplication

scheme (POD) to enhance the performance of main storage systems in the Cloud. With the help

of data deduplication on the I/O channel, duplicate write requests will be eliminated, enhancing

the performance of main storage systems in the Cloud while also conserving storage space.

It works best in situations where several copies of data that is extremely close or even identical

are kept on a single disc. The outcome demonstrated the high efficiency of this POD that can

be seen from following screenshots.

Fig 3: User Registration

Fig 4: User Authentication

http://philstat.org.ph/

Vol. 70 No. 1 (2021)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2326-9865

DOI: https://doi.org/10.17762/msea.v70i1.2299

196

Fig 5: Cloud Service Provider

Fig 6: File Download

5. Conclusion

The system's suggestion for this project is a performance-focused I/O deduplication.

Performance-Oriented data deduplication strategy (POD) exactly what it sounds like. With the

help of data deduplication on the I/O channel, duplicate write requests will be eliminated,

enhancing the performance of main storage systems in the Cloud while also conserving storage

space. The interplay between read and write requests in deduplication-based main storage

systems requires more thorough modelling and analysis. If there is no index-lookup disc

barrier, deduplication decreases write traffic and directly enhances write performance. The

quantity of storage required for a certain collection of files is decreased using storage-based

data deduplication.

It works best in applications where several copies of data that are very close or even identical

are kept on a single disc. When it comes to data backups, which are frequently carried out to

http://philstat.org.ph/

Vol. 70 No. 1 (2021)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2326-9865

DOI: https://doi.org/10.17762/msea.v70i1.2299

197

safeguard against data loss, the majority of the data are consistent from backup to backup.

Common backup systems attempt to take advantage of this by recording differences between

files or ignoring files that haven't changed. However, neither method completely eliminates

redundancies. Large files that have only minor changes, like an email database, are not helped

by hard-linking since differences only reveal redundancy in subsequent iterations of a single

file (think of a part that was removed and subsequently brought back in or a logo picture used

in several publications).The outcome demonstrated how effective this POD is.

Reference

1. “Avoiding File System Micromanagement with Range Writes”, Ashok Anand, Sayandeep

Sen, Andrew Krioukov, Florentina Popovici, 2008.

2. “AWOL: An Adaptive Write Optimizations Layer”, Alexandros Batsakis, Randal Burns,

2008.

3. “A Five-Year Study of File-System Metadata”, Nitin Agrawal, William J. Bolosky, John

R. Douceur, Jacob R. Lorch., 2007.

4. “Improving Restore Speed for Backup Systems that Use Inline Chunk-Based

Deduplication”, Mark Lillibridge,Kave Eshghi ,and Deepavali Bhagwat, 2013.

5. “Six Degrees of Scientific Data: Reading Patterns for Extreme Scale Science IO”, Jay

Lofstead, Milo Polte , Garth Gibson , Scott A. Klasky, 2011.

6. “I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance”, Ricardo

Koller, Raju Rangaswami., 2010.

7. “The Effectiveness of Deduplication on Virtual Machine Disk Images.”, Keren Jin, Ethan

L. Miller, 2009.

8. “Understanding and Improving Computational Science Storage Access through

Continuous Characterization”, Philip Carns, Kevin Harms, William Allcock, Charles

Bacon, 2011.

9. “stdchk: A Checkpoint Storage System for Desktop Grid Computing.”, Samer Al Kiswany

, Matei Ripeanu , Sudharshan S. Vazhkudai , Abdullah Gharaibeh, 2008.

10. “Nitro: A Capacity-Optimized SSD Cache for Primary Storage”, Cheng Li , Philip Shilane,

Fred Douglis, Hyong Shim, Stephen Smaldone, and Grant Wallace, 2011.

http://philstat.org.ph/

