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Abstract 

In this paper, we investigate the Daniell integral to an integral with values 

in an arbitrary Banach space. We start from a space of real valued 

functions on which an integral is defined and extend the integration to a 

complete space of functions with values in a Banach space. 
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Introduction 

The history of definite integral is fascinating because the concept was developed to solve issues with estimating 

the lengths, areas, and volumes of curved geometric objects. Greek mathematicians originally tackled these 

issues, and they went through several stages before Riemann established the idea of integration over a period in 

1868 and Lebesgue introduced the integral based on the idea of measurement in 1902. Known as "A general 

kind of integral," Daniell released his article in 1918 and described the integral as a nonnegative linear function 

defined on a Riesz space. Compared to the Riemann and Lebesgue integrals, the Daniell integral was more 

universal. 

He established the definition of Daniell space in [1] and expanded it to demonstrate that it contains the first. He 

also defined the lower and upper Daniell integrals. He then dealt in [3] with the same definition in more detail. 

We observe in [2] that the researchers provided a different description for the functions in the Daniell space 

extension, as well as the concept of the full space, and demonstrated that the extension space is complete. In [4], 

he describes how to construct the Bochner integral on a Banach space and presents a straightforward restriction 

of the vector valued integral on abstract measure space. We describe the Daniell space as a whole as a Banach 

space. 

    In our paper, we presented the definition of the extension space as it was known in[1]and we showed that this 

space is complete based on the definition of the complete space in[2] also We adapt the method employed in the 

paper [4]. However the paper discusses the Bochner integral on a Banach space, but we discusses the complete 

Daniell space on a Banach space based on what was presented in [4]. 

 

Fundamental Concepts 

In this section the important and basic concepts are given to expression all the results that need it later.  

Definition2.1,[1]: 

Let𝛺 be an arbitrary set and ℎ,𝑘are real valued functions on 𝛺then we defined 

ℎ˅𝑘 = max{ℎ, 𝑘} = 𝑚𝑎𝑥{ℎ − 𝑘, 0} + 𝑘and 

ℎ˄𝑘 = min{ℎ, 𝑘} = (ℎ + 𝑘) − max{ℎ, 𝑘},where 0 is the zero function. 

Definition 2.2,[7]: 

Let 𝐿 be a set of real valued function defined on 𝛺. we say that 𝐿 is a lattice if max{ℎ, 𝑘} ,min{ℎ, 𝑘} ∈ 𝐿 for all 

ℎ, 𝑘 ∈ 𝐿.The linear space of all real valued lattice functions on 𝛺is called Riesz space 

Remarks 2.3,[5]: 

(1) Let 𝐿 be a linear space of functions(ℎ: 𝛺 → ℝ). Then S is a vector lattice(Riesz space) if 𝑚𝑎𝑥{ℎ, 0} ∈ 𝐿 for all 

ℎ∈L. 
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(2) If ℎ is a real valued function in  Riesz space then |ℎ| is also in a Riesz space. 

Definition2.4,[8]: 

Let 𝛺 be any set and ℎ ∶ 𝛺→ ℝ a function, we define the positive and negative parts ℎ+and ℎ− by 

ℎ += 𝑚𝑎𝑥{ ℎ ,0}and ℎ −=− 𝑚𝑖𝑛{ ℎ ,0} = 𝑚𝑎𝑥{− ℎ ,0} 

where 

ℎ+(𝑥) = { ℎ(𝑥),                ℎ(𝑥) ≥ 0

     0,                      ℎ(𝑥) ≤ 0       
andℎ−(𝑥) = { −ℎ(𝑥),                ℎ(𝑥) ≤ 0

        0,                       ℎ(𝑥) > 0       
 

hold the following for ℎ+ and ℎ−are nonnegative such that  

(1) ℎ = ℎ+ − ℎ−and |ℎ| = ℎ+ + ℎ− = ℎ++(−ℎ)− 

(2) ℎ+ =
1

2
(|ℎ| + ℎ) and ℎ− =

1

2
(|ℎ| − ℎ) 

(3) (−ℎ)+ = ℎ−and (−ℎ)− = ℎ+ 

(4) If 𝜆 > 0, then (𝜆ℎ)+ = 𝜆ℎ+and (𝜆ℎ)− = 𝜆ℎ−. 

Definition 2.5, [2]: 

A triple (𝛺, 𝐿, 𝐷) is a Daniell space if  𝐹 is a nonempty set, 𝐿 is a Riesz space of  real valued functions on 𝐹, and 

𝐷: 𝐿 → ℝ is a Daniell functional. 

Definition 2.6,  [8]: 

𝐷is continuous under monotone limit if and only if  𝐷(ℎn) ↓ 0 whenever ℎ𝑛 ↓ 0 and each ℎ𝑛 ∈ 𝐿. 

Definition 2.7, [2]: 

Let 𝐿 be a Riesz space of functions defined on 𝐹. A linear functional 𝐷:𝛺 → ℝ is called  

(1) Positive if 𝐷(ℎ) ≥ 0 whenever ℎ ∈ 𝐿 and 𝑓 ≥ 0. 

(2) continuous if and only if  𝐷(ℎ𝑛)↓0 whenever ℎ𝑛↓0 for each ℎ𝑛 ∈ 𝐿. 

(3) Continuous under monotone limits if for every increasing sequence {ℎ𝑛} of functions in 𝐿 and ℎ ∈ 𝐿 such that 

ℎ(𝑥) ≤ lim
𝑛→∞

𝑓𝑛(𝑥) for all 𝑥 ∈ 𝛺, then 𝐷(𝑓) 𝑙𝑖𝑚
𝑛→∞

=𝐷(𝑓𝑛). 

(4) if 𝐷 is positive, then 𝐷(𝑓) ≤ 𝐷(𝑔) for each 𝑓 ∈ 𝐿 and ℎ ≤ 𝑘. 

Then Daniell functional (Daniell integral) whenever 𝐷 is positive and continuous under monotone limit. 

Theorem 2.8, [1]: 

Let 𝐿 be a Riesz space on F. Suppose that  𝐷 is a Daniell integral on 𝑆. Then 𝐷(𝑓) ≤ ∑ 𝐷(𝑓𝑛)
∞
𝑛=1  whenever {𝑓𝑛} 

is a sequence of nonnegative functions in 𝐿 and 𝑓 ∈ 𝐿 such that 𝑓(𝑥) ≤ ∑ 𝑓𝑛(𝑥)
∞
𝑛=1  for all 𝑥 ∈ 𝛺. 

Definition 2.9, [2]: 

  If 𝐷 be a Daniell functional, a function 𝑓 ∈ 𝐿 is called a null function if 𝐷(|𝑓|) = 0. 

Example 2.10: 

Let 𝛺 = (0,1) define 𝑓 ∈ 𝐿 by 𝑓(𝑥) = 0if 𝑥 ∉ ℚ, if 𝑥 =
𝑞

𝑙
 then 𝑓(𝑥) =

1

𝑙
, also let 𝑓(0) = 𝑓(1) = 0 then this 

function is a null function thus 𝐷(𝑓) = 𝑓(0) − 𝑓(1) = 0. 

Remark 2.11, [3]: 

  If 𝐷 be a Daniell functional and 𝑓 is a null function and |𝑔| ≤ |𝑓| then 𝑔 is a null function. 

Since 0 ≤ 𝐷(|𝑔|) ≤ 𝐷(|𝑓|) = 0. 

Definition 2.12, [2]: 

  If 𝐷 be a Daniell functional . A set 𝐴 ⊆ 𝛺 is called a null set if the characteristic function of 𝐴 is a null 

function. That is  𝐷(|𝐼𝐴|) = 0. 

Example 2.13: 

   Let 𝛺 = ℝand 𝐴 = {𝑓 = 0} ⊆ ℝ, then 𝐴 is a null set,  

since𝐷(𝐼𝐴) = 𝐷(0) = 0. 

Definition 2.14, [ 2 ]: 

   Let(𝛺, 𝐿, 𝐷)be a Daniell space.A norm on 𝐿 is a function ‖. ‖: 𝐿 → ℝ which is defined by ‖𝑓‖ = 𝐷(|𝑓|) 

having the following properties, 

(1) ‖𝑓‖ ≥ 0 for all 𝑓 ∈ 𝐿, 

(2) ‖𝑓‖ = 0  iff  𝑓 = 0 a.e., 

(3) ‖𝜆𝑓‖ = |𝜆|‖𝑓‖  for all 𝑓 ∈ 𝐿 and 𝜆 ∈ ℝ, 

(4) ‖𝑓 + 𝑔‖ ≤ ‖𝑓‖ + ‖𝑔‖for all   𝑓, 𝑔 ∈ 𝐿. 
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Vol. 72 No. 1 (2023) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

ISSN:2094-0343 
2326-9865 

858 
 
 

A Riesz space 𝑆 together with ‖∙‖ is called a normed space and it is denoted by (𝐿 ,‖∙‖). 

Remark 2.15: 

   Every subspace of a normed space is also normed space, that is (𝐿, ‖. ‖) be a normed space and‖[𝑓]‖ =

 𝐷(|𝑓|). 

Definition2.16: 

A  seminorm on 𝐿 is a function 𝔭: 𝐿 → ℝ which is defined by 𝔭(𝑓) = 𝐷(|𝑓|), having the following properties,   

(1) 𝔭(𝜆𝑓) = |𝜆|𝔭(𝑓) for all  𝑓 ∈ 𝐿 and for all  𝜆 ∈ ℝ, 

(2) 𝔭(𝑓 + 𝑔) ≤ 𝔭(𝑓) + 𝔭(𝑔) for all 𝑓, 𝑔 ∈ 𝐿 

A family 𝒯 of seminorms on 𝐿 is said to be separating if  for each 𝑓 ≠ 0 corresponds at least one 𝔭 ∈ 𝒯 with 

𝔭(𝑓) ≠ 0 . 

Theorem 2.17: 

Suppose 𝔭 is a seminorm on  , then: 

(1) 𝔭(0) = 0, 

(2) 𝔭(−𝑓) = 𝔭(𝑓) for all 𝑓 ∈ 𝐿, 

(3) 𝔭(𝑓 − 𝑔) = 𝔭(𝑔 − 𝑓) for all  𝑓, 𝑔 ∈ 𝐿, 

(4) |𝔭(𝑓) − 𝔭(𝑔)| ≤ 𝔭(𝑓 − 𝑔) for all  𝑓, 𝑔 ∈ 𝐿, 

(5) 𝔭(𝑓) ≥ 0for all 𝑓 ∈ 𝐿. 

Proof: Let 𝑓, 𝑔 ∈ 𝐿 

(1) Let 𝑓 ∈ 𝐿, Since 𝔭(𝑓) = 𝐷(|𝑓|) then 𝔭(0) = 𝐷(0) = 0. 

(2) Let 𝑓 ∈ 𝐿, 𝔭(−𝑓) = 𝐷(|−𝑓|) = 𝐷(|𝑓|) = 𝔭(𝑓). 

(3) Let𝑓, 𝑔 ∈ 𝐿, 𝔭(𝑓 − 𝑔) = 𝐷(|𝑓 − 𝑔|) = 𝐷(|𝑔 − 𝑓|) = 𝔭(𝑔 − 𝑓) 

(4) Let𝑓, 𝑔 ∈ 𝐿, |𝔭(𝑓) − 𝔭(𝑔)| = |𝐷(|𝑓|) − 𝐷(|𝑔|)| ≥ |𝐷(|𝑓|)| − |𝐷(|𝑔|)| ≤ 𝐷(|𝑓|) − 𝐷(|𝑔|) = 𝐷(|𝑓 − 𝑔|) =

𝔭(𝑓 − 𝑔). 

(5) Let𝑓 ∈ 𝐿,  since 𝐷(|𝑓|) ≥ 0 implies that 𝔭(𝑓) ≥ 0. 

Remark 2.18: 

(1) ‖∙‖need not be a norm since if ‖𝑓‖ = 0 need not to be 𝑓 = 0 if and only if 𝑓 = 0 𝑎. 𝑒., such that if 𝑓 = 0 a.e. 

then there is a set 𝐴 = {𝑥: 𝑓(𝑥) ≠ 0}, 𝐴 ⊆ 𝐹, which is a null set, then |𝑓| = 0 a.e. implies 𝐷(𝑓) = 0. Therefore 

‖𝑓‖ = 0. Conversely, if  ‖𝑓‖ = 0, then 𝐷(𝑓) = 0, since |𝑓| ≥ 0 then 𝑓 = 0. 

(2) A normed space or a seminormed which is complete in the metric induced by the norm is called a Banach space, 

that is every Cauchy sequences is convergent. 

 

Complete Daniell Space 

Definition 3.1, [5]:  

Let 𝐿∗ be .the class of all.extendedreal.valued functions on 𝛺represented as a limit of a monotone non-

decreasing.sequences of functions in the vector lattice 𝐿. 

That is ( if𝐿is a vector lattice, then ℎ ∈ 𝐿∗if and only ifℎ: 𝛺 → ℝ̅  a function and there exists a sequence {ℎ𝑛} of 

monotone increasing sequences of functions in 𝑆 such that ℎ = lim
𝑛→∞

ℎ𝑛). 

Definition 3.2, [2]: 

Let 𝑓 be a real function on 𝛺. if there exist afunction 𝑓𝑛 ∈ 𝐿,𝑛 ∈ ℕ, such that 

(1) ∑ 𝐷(|𝑓𝑛|) < ∞
∞
𝑛=1  

(2) 𝑓(𝑥) = ∑ 𝑓𝑛(𝑥)
∞
𝑛=1 for every 𝑥 ∈ 𝛺 and ∑ |𝑓𝑛(𝑥)|

∞
𝑛=1 < ∞, then we write 𝑓 = ∑ 𝑓𝑛

∞
𝑛=1 . 

Definition 3.3, [2]: 

A Daniell space  (𝛺, 𝐿, 𝐷) is called complete if 𝑓 = ∑ 𝑓𝑛
∞
𝑛=1  for some 𝑓1, 𝑓2, , …  ∈ 𝐿, implies that 𝑓 ∈ 𝐿. 

Theorem 3.4, [8]: 

(1) Let {𝑓𝑛} and {𝑔𝑚}be a monotone increasing sequences such that 𝑓𝑛 and 𝑔𝑚 are in 𝐿 for any𝑛,𝑚 ∈ ℕ and let 

lim
𝑛→∞

𝑓𝑛 ≤ lim
𝑚→∞

𝑔𝑚. Then lim
𝑛→∞

𝐷(𝑓𝑛) ≤ lim
𝑚→∞

𝐷(𝑔𝑚). 

            Furthermoreif 𝑓 is in 𝐿∗and𝑓𝑛 ↑ 𝑓 ,𝑔𝑚 ↑ 𝑓then lim
𝑛→∞

𝐷(𝑓𝑛) = lim
𝑚→∞

𝐷(𝑔𝑚). 

(2) If  𝑓 is in 𝐿∗, then there exist an increasing sequence{𝑓𝑛} such that 𝑓𝑛 is in𝐿 for all n and 𝑓 = 𝑙𝑖𝑚
𝑛→∞

𝑓𝑛 . Then 

𝐷(𝑓) = 𝑙𝑖𝑚
𝑛→∞

𝐷(𝑓𝑛). 
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(3) Let 𝑓: 𝛺 → ℝ̅be a function and 𝑓(𝑥) ≥ 0 ∀ 𝑥 ∈ 𝛺then 𝑓is in 𝐿∗ if and only if there exist a sequences {𝑓𝑛} of 

nonnegative functions in 𝐿 with  𝑓 = ∑ 𝑓𝑛
∞
𝑛=1 . Further, 𝐷(𝑓) = ∑ 𝐷(𝑓𝑛)

∞
𝑛=1 . 

Theorem 3.5: 

Let𝐿∗be extended lattice set then a triple (𝛺, 𝐿∗ , 𝐷) is a complete Daniell space. 

Proof : 

i. First we have to prove that 𝐿∗ is a Riesz space 

Let ℎ, 𝑘 ∈ 𝐿∗, 𝜆, 𝛽 ∈ ℝ, then ℎ = 𝑙𝑖𝑚
𝑛→∞

ℎ𝑛and 𝑘 = 𝑙𝑖𝑚
𝑚→∞

𝑘𝑚, whereℎ𝑛and𝑘𝑛 are increasing sequences of functions 

in 𝐿, then, 𝜆ℎ(𝑥) + 𝛽𝑘(𝑥) = 𝜆 𝑙𝑖𝑚
𝑛→∞

ℎ𝑛(𝑥) + 𝛽 𝑙𝑖𝑚
𝑚→∞

𝑘𝑚 (𝑥) = 

𝑙𝑖𝑚
𝑛→∞

𝜆 ℎ(𝑥)+ 𝑙𝑖𝑚
𝑚→∞

𝛽 𝑘𝑛(𝑥) = lim
𝑛,𝑚→∞

(𝜆ℎ𝑛(𝑥) + 𝛽𝑘𝑚(𝑥)) .there fore 𝜆ℎ + 𝛽𝑘 is in 𝐿∗. 

Since 𝐿 is a Riesz  space then  ℎ𝑛⋁𝑘𝑛 is in 𝐿 for all n then lim
𝑛→∞

(ℎ𝑛⋁𝑘𝑛) is in 𝑆∗ to show that ℎ𝑛⋁𝑘𝑛 is 

monotone increasing, let 𝑥 ∈ 𝛺 then ℎ𝑛(𝑥) ≤ ℎ𝑛+1(𝑥) ≤ (ℎ𝑛+1⋁𝑘𝑛+1)(𝑥) 

and𝑘𝑛(𝑥) ≤ 𝑘𝑛+1(𝑥) ≤ (ℎ𝑛+1⋁𝑘𝑛+1)(𝑥), so that (ℎ𝑛⋁𝑘𝑛)(𝑥) ≤ (ℎ𝑛+1⋁𝑘𝑛+1)(𝑥). 

Therefore ℎ𝑛⋁𝑘𝑛 is monotone increasing.If  lim ℎ𝑛(𝑥) = ∞ or 𝑙𝑖𝑚𝑔𝑛(𝑥) = ∞,  

lim (ℎ𝑛⋁𝑘𝑛)(𝑥) = ∞ and(ℎ⋁𝑘)(𝑥) = ∞ then (ℎ⋁𝑘)(𝑥) = lim(ℎ𝑛⋁𝑘𝑛)(𝑥). 

Let  lim ℎ𝑛(𝑥) ≠ ∞ and 𝑙𝑖𝑚𝑘𝑛(𝑥) ≠ ∞, then lim (ℎ𝑛⋁𝑘𝑛)(𝑥) ≠ ∞ and (ℎ⋁𝑘)(𝑥) ≠ ∞.   

Now define 𝑓𝑛 = ℎ𝑛⋁𝑘𝑛 for all n. Then 𝑓𝑛 is in 𝐿, and lim 𝑓𝑛(𝑥) = lim(ℎ𝑛⋁𝑘𝑛)(𝑥).   

Let𝑓𝑛(𝑥) > max(𝑙𝑖𝑚ℎ𝑛(𝑥), 𝑙𝑖𝑚𝑘𝑛(𝑥)) = max(ℎ(𝑥), 𝑘(𝑥)). 

Suppose that there exist 𝑁 ∈ 𝕫+such that 𝑛 ≥ 𝑁 implies that 𝑓𝑛(𝑥) > 𝑚𝑎𝑥(ℎ(𝑥), 𝑘(𝑥)) , since𝑓𝑛 is monotone. 

But {ℎ𝑛}, {𝑘𝑛} monotone increasing implies 𝑙𝑖𝑚𝑘𝑛(𝑥) ≥ 𝑘𝑛(𝑥) and 𝑙𝑖𝑚ℎ𝑛(𝑥) ≥ ℎ𝑛(𝑥) for all n.  

Thus 𝑓𝑛(𝑥) > 𝑚𝑎𝑥(ℎ𝑖(𝑥), 𝑘𝑖(𝑥))for all 𝑖 and for all 𝑛 ≥ 𝑁 which is a contradication. 

Therefore, 𝑙𝑖𝑚 𝑓𝑛(𝑥) ≤𝑚𝑎𝑥(ℎ(𝑥), 𝑘(𝑥)). But 𝑓𝑛(𝑥) ≥ ℎ𝑛(𝑥) for all n implies 𝑓𝑛(𝑥) ≥ ℎ(𝑥), and 𝑓𝑛(𝑥) ≥

𝑘𝑛(𝑥) for all n implies  𝑓𝑛(𝑥) ≥ 𝑘(𝑥), thus 𝑙𝑖𝑚 𝑓𝑛(𝑥) ≥𝑚𝑎𝑥(ℎ(𝑥), 𝑘(𝑥)), so 𝑙𝑖𝑚 𝑓𝑛(𝑥) =𝑚𝑎𝑥(ℎ(𝑥), 𝑘(𝑥)). 

Therefore, ℎ ∨ 𝑘 is in 𝐿∗, by the same way we can prove that ℎ ∧ 𝑘 is in 𝐿∗. Clearly 𝐿 ⊂  𝐿∗, then 𝐿∗ is a lattice 

contained 𝐿. 

ii.Now to prove that 𝐷: 𝐿∗ → ℝ is a positive linear function on 𝐿∗, let ℎ ∈ 𝐿∗, ℎ ≥ 0, there is an increasing 

sequence{ℎ𝑛} such that ℎ𝑛 is in 𝐿 for all 𝑛 = 1,2,3, …. and  0 ≤ ℎ = 𝑙𝑖𝑚
𝑛→∞

ℎ𝑛 implies lim
𝑛→∞

𝐷(ℎ𝑛) ≥ 𝐷(0) = 0. 

Let ℎ, 𝑘 ∈ 𝐿∗ then ℎ = 𝑙𝑖𝑚
𝑛→∞

ℎ𝑛 𝑎𝑛𝑑 𝑘 = 𝑙𝑖𝑚
𝑚→∞

𝑘𝑚 , whereℎ𝑛and𝑘𝑛 are monotone increasing sequences of 

function in 𝐿. 

Suppose that ℎ ≤ 𝑘 implies that 𝑙𝑖𝑚
𝑛→∞

ℎ𝑛 ≤ 𝑙𝑖𝑚
𝑚→∞

𝑘𝑚 then  

𝐷(ℎ) = 𝐷(𝑙𝑖𝑚
𝑛→∞

ℎ𝑛) ≤ 𝐷 ( 𝑙𝑖𝑚
𝑚→∞

𝑘𝑚) = 𝐷(𝑘)implies𝐷(ℎ) = 𝑙𝑖𝑚
𝑛→∞

𝐷(ℎ𝑛) ≤ 𝑙𝑖𝑚
𝑚→∞

𝐷(𝑘𝑚) = 𝐷(𝑘). There fore 

𝐷(ℎ) ≤ 𝐷(𝑘). 

Let ℎ, 𝑘 ∈ 𝐿∗ 𝑎𝑛𝑑 𝛼, 𝛽 ∈ ℝ then 𝐷 (𝛼ℎ + 𝛽𝑘) = 𝐷 (𝛼(𝑙𝑖𝑚
𝑛→∞

ℎ𝑛) + 𝛽 ( 𝑙𝑖𝑚
𝑚→∞

𝑘𝑚)) = 

𝛼𝐷(lim ℎ𝑛
𝑛→∞

 ) +𝛽𝐷(lim 𝑘𝑚
𝑚→∞

) = 𝛼𝐷(ℎ) + 𝛽𝐷(𝑘). 

iii. Now to prove that 𝐷 is a Daniell functional on 𝐿∗. 

Let {ℎ𝑛} be an increasing sequence in 𝐿∗ and ℎ in 𝐿∗ with ℎ ≤ 𝑙𝑖𝑚
𝑛→∞

ℎ𝑛, let 𝑘𝑛 = ℎ𝑛 − ℎ1,  𝑘𝑛 ≥ ℎ, then 𝐷(ℎ𝑛) =

𝐷(𝑘𝑛) + 𝐷(ℎ1) implies that lim
𝑛→∞

 𝐷(ℎ𝑛) = lim
𝑛→∞

𝐷(𝑘𝑛) + 𝐷(ℎ1) , let 𝑘 = lim
𝑛→∞

𝑘𝑛 + ℎ1 = lim
𝑛→∞

ℎ𝑛 then 𝑘 in 𝐿∗, 

then ℎ ≤ lim
𝑛→∞

ℎ𝑛 = 𝑘 implies  

𝐷(ℎ) ≤ 𝐷(𝑘) = 𝑙𝑖𝑚
𝑛→∞

𝐷(𝑘𝑛) + 𝐷(ℎ1) = 𝑙𝑖𝑚
𝑛→∞

 𝐷( ℎ𝑛). There fore 𝐷(ℎ) ≤ 𝑙𝑖𝑚
𝑛→∞

 𝐷(ℎ𝑛). 

Hence  (Ω, 𝐿∗ , 𝐷) is a Daniell space. 

iv. to prove that (Ω, 𝐿∗ , 𝐷) is complete space.  

Let ℎ𝑛 ∈ 𝐿
∗, ℎ𝑛 ≥ 0 for each 𝑛 = 1,2, … and ℎ = ∑ ℎ𝑛

∞
𝑛=1 , we must prove that ℎ ∈ 𝐿∗. 

Since ℎ𝑛 ∈ 𝐿
∗ then by (1.2.9 (3)) there exist a sequences of positive functions {𝑔𝑚,𝑛} In 𝐿 for each n such that 

ℎ𝑛 = ∑ 𝑘𝑛,𝑚
∞
𝑚=1 , then ℎ = ∑ ℎ𝑛

∞
𝑛=1 = ∑ ∑ 𝑘𝑛,𝑚

∞
𝑚=1 = ∑ 𝑘𝑛,𝑚

∞
𝑛,𝑚=1

∞
𝑛=1  then ℎ ∈ 𝐿∗ since 𝐿 ⊂ 𝐿∗. 

Therefore (𝛺, 𝐿∗ , 𝐷) is a complete Daniell space. 

Theorem3.6:  
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Let (Ω, 𝐿∗. 𝐷) be a complete Daniell space and 𝑓𝑛 ∈ 𝐿
∗ we have,‖∑ 𝑓𝑛

∞
𝑛=1 ‖ ≤ 𝐷(|∑ 𝑓𝑛|) 

Proof: 

Let 𝑓𝑛 ∈ 𝐿
∗, since ‖∑ 𝑓𝑛

∞
𝑛=1 ‖ = ‖𝑓1 +⋯+ 𝑓𝑛‖ ≤ ‖𝑓1‖ + ⋯+ ‖𝑓𝑛‖ = 𝐷(‖𝑓1‖ + ⋯+ ‖𝑓𝑛‖) 

= 𝐷(|𝑓1 +⋯+ 𝑓𝑛|). 

Theorem3.7: Let (Ω, 𝐿∗. 𝐷) be a complete Daniell space then, 

(1) |𝑓| ∈ 𝐿∗ 

(2) 𝐷(|𝑓|) = 𝑙𝑖𝑚
𝑛→∞

𝐷(|𝑓1 +⋯+ 𝑓𝑛|), 

(3) ‖𝐷(𝑓1) + 𝐷(𝑓2) + ⋯‖ ≤ 𝐷(|𝑓|). 

Proof: 

(1) Let 𝑔n = ∑ 𝑓𝑛
∞
𝑛=1 for  𝑛𝜖𝑁 and ℎ1 = |𝑓1|andℎn = |𝑔n| − |𝑔n−1|for 𝑛 ≥ 2we will show that|𝑓| = ℎ1 + |𝑓1| −

|𝑓1| + ℎ2 + |𝑓2| − |𝑓2| + ⋯, since |ℎ𝑛| = ||𝑔𝑛| − |𝑔𝑛−1|| ≤ |𝑔𝑛 − 𝑔𝑛−1| ≤ |𝑓𝑛 ∣ we have, ∥∥ℎ1∥∥ + ∥∥𝑓1∥∥ + ∥∥𝑓1∥∥ +

∥∥ℎ2∥∥ + ∥∥𝑓2∥∥ + ∥∥𝑓2∥∥ + ⋯ ≤ 3∑  ∞
𝑛=1 ∥∥𝑓𝑛∥∥ < ∞. 

If |ℎ1(𝑥)| + ∥∥𝑓1(𝑥)∥∥ + ∥∥𝑓1(𝑥)∥∥ + |ℎ2(𝑥)| + ∥∥𝑓2(𝑥)∥∥ + ∥∥𝑓2(𝑥)∥∥ +⋯ < ∞for some 𝑥 ∈ 𝛺, then 

∑𝑛−1
∞  ∥∥𝑓𝑛(𝑥)∥∥1 < ∞ and consequently ∑𝑛−1

∞  𝑓𝑛(𝑥) = 𝑓(𝑥). Hence ∑  𝑚
𝑛=1 ℎ𝑛(𝑥) = ∥∥𝑔𝑚(𝑥)∥∥ = ∥∥∑  𝑚

𝑛=1  𝑓𝑛(𝑥)∥∥ →∥

𝑓(𝑥) ∥as 𝑚 → ∞. we obtain that |𝑓| ∈ 𝐿∗. 

(2) Since 𝐷|𝑓| = D(ℎ1) + D|𝑓1| − D|𝑓1| + D(ℎ2) + D|𝑓2| − D|𝑓2| + ⋯ = 𝑙𝑖𝑚
𝑛→∞

 𝐷(ℎ1 +⋯+ ℎ𝑛) = 𝑙𝑖𝑚
𝑛→∞

 𝐷|𝑔𝑛| =

lim
𝑛→∞

 D|𝑓1 +⋯+ 𝑓𝑛|. 

(3) Since || ∑  𝑚
𝑛=1 𝐷𝑓𝑛 ∥≤ D|∑  𝑚

𝑛=1  𝑓𝑛| = D|𝑔𝑚| = D|𝑓1 +⋯+ 𝑓𝑚|, 

we have∥∥𝐷𝑓1 + D𝑓2 +⋯∥∥ ≤ lim
𝑛→∞

 D|𝑓1 +⋯+ 𝑓𝑛| = D|𝑓|. 

Theorem 3.8: 

The integral is a linear operator from the complete Daniell space to the Daniell functional. 

That is,‖𝐷(𝑓)‖ ≤ 𝐷(|𝑓|)for all 𝑓 ∈ 𝐿∗ 

Proof: 

Linearity follows easily from the fact that, if = ∑ 𝑓𝑛
∞
𝑛=1  , 𝑔 = ∑ 𝑔𝑛

∞
𝑛=1 and 𝛾 ∈ ℝ, then 

𝑓 + 𝑔 = 𝑓1 + 𝑔1 + 𝑓2 + 𝑔2and 𝛾𝑓 = ∑ 𝛾𝑓𝑛
∞
𝑛=1 . 

By part (3)of theorem 3.7,since ‖𝐷(𝑓)‖ = ‖𝐷(∑ 𝑓𝑛
∞
𝑛=1 )‖ = ‖𝐷(𝑓1) + 𝐷(𝑓2) + ⋯‖ ≤ 𝐷(|𝑓|). 

 

The Complete Daniell Space as a Banach Space 

in this section we proved that the normed space method can be applied to Daniellintegrable functions and show  

that the complete Daniell space is complete with respect to the norm . 

we will start this section with the following definition. 

Definition 4,1, [2]: 

   Let(𝛺, 𝐿, 𝐷) be a Daniell space and let 𝑓, 𝑓𝑛 ∈ 𝐿, 𝑛 ∈ ℕ, we say that, 

(1) 𝑓𝑛 converges in norm to 𝑓, denoted by 𝑓𝑛
𝑖.𝑛.
→ 𝑓 , if ‖𝑓𝑛 − 𝑓‖ → 0 as 𝑛 → ∞, 

(2) {𝑓𝑛} is a cauchy in norm , denoted by 𝑓𝑛 Cauchy i.n., if  

‖𝑓𝑛 − 𝑓𝑚‖ → 0 as 𝑛,𝑚 → ∞. 

Example 4.2: 

   Let 𝐹 = [0,1] define ℎ𝑚 = 𝐼[0,1
𝑛
]
then ℎ𝑚

𝑖.𝑛.
→ 0, since ‖ℎ𝑚 − 0‖ = ‖ℎ𝑚‖ = 𝐷 (𝐼[0,1

𝑛
]
) =

1

𝑛
→ 0 as 𝑛 → ∞. 

Theorem 4.3: 

   Let  (𝛺, 𝐿, 𝐷) be a Daniell space and let 𝑓 ∈ 𝐿and 𝑓 = lim
𝑛→∞

𝑓𝑛, then 𝑓𝑛
𝑖.𝑛.
→ 𝑓. 

Proof: 

Let 𝜀 > 0, since 𝑓 = lim
𝑛→∞

𝑓𝑛 there is 𝑘 ∈ ℤ+, such that |𝑓𝑛 − 𝑓| < 𝜀 for all 𝑛 ≥ 𝑘, then 𝐷(|𝑓𝑛 − 𝑓|) < 𝜀 for all 

𝑛 ≥ 𝑘 There fore 𝑓𝑛
𝑖.𝑛.
→ 𝑓. 

Remark 4.4: 

If (𝛺, 𝐿, 𝐷) be a Daniell space. We will denoted to the space of equivalent class in 𝐿 by ℒ and [𝑓]be the 

quivalence class of 𝑓 ∈ 𝐿 such that [𝑓] = {𝑔 ∈ 𝐿: 𝐷(|𝑓 − 𝑔|) = 0}. 

    To prove that ∼𝑓 be an equivalent relation on 𝒮 we have to show that ∼𝑓 is, 
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(1) Reflexive: Let ∈ 𝑆, |𝑓 − 𝑓| = |0| = 0, then 𝐷(|𝑓 − 𝑓|) = 𝐷(0) = 0, so 𝐷(|𝑓 − 𝑓|) = 0.  Therefore 𝑓 ∼𝑓 𝑓. 

(2) Symmetric: Let 𝑓, 𝑔 ∈ 𝐿 and  𝑓 ∼𝑓 𝑔 then 𝐷(|𝑓 − 𝑔 |) = 0 = 𝐷(|𝑔 − 𝑓 |)hence 𝑔 ∼𝑓 𝑓. 

(3) Transitive: Let 𝑓, 𝑔, ℎ ∈ 𝐿 with 𝑓 ∼𝑓 𝑔 and 𝑔 ∼ ℎ then |𝑓 − ℎ| = |𝑓 − ℎ + 𝑔 − 𝑔| ≤ |𝑓 − 𝑔| + |𝑔 − ℎ|, so 

|𝑓 − ℎ| ≤ |𝑓 − 𝑔| + |𝑔 − ℎ|, then 𝐷(|𝑓 − ℎ|) ≤ 𝐷(|𝑓 − 𝑔| + |𝑔 − ℎ|) = 𝐷(|𝑓 − 𝑔|) + 𝐷(|𝑔 − ℎ|) = 0, then 

𝐷(|𝑓 − ℎ|) ≤ 0 and since |𝑓 − ℎ| ≥ 0, then 𝐷(|𝑓 − ℎ|) ≥ 𝐷(0) = 0, implies 𝐷(|𝑓 − ℎ|) ≥ 0, and hence 

𝐷(|𝑓 − ℎ|) = 0. Therefore 𝑓 ∼𝑓 ℎ. 

Theorem 4.5: 

   The space of equivalent class (𝛺, ℒ, 𝐷) is a subspace of (𝛺, 𝐿, 𝐷) 

Proof: 

It is clear that ℒ ⊆ 𝐿, 

(1) Let[𝑓], [𝑔] ∈ ℒ then[𝑓] + [𝑔] = {ℎ ∈ 𝐿:𝐷(|𝑓 − ℎ|) = 0)} + {𝑗 ∈ 𝐿: 𝐷(|𝑔 − 𝑗|) = 0} = {ℎ + 𝑗 ∈ 𝐿: 𝐷(|𝑓 −

ℎ|) + 𝐷(|𝑔 − 𝑗|) = 0} = {ℎ + 𝑗 ∈ 𝐿: 𝐷(|𝑓 − ℎ| + |𝑔 − 𝑗|) = 0} = {ℎ + 𝑗 ∈ 𝐿: 𝐷(|𝑓 + 𝑔| − |ℎ + 𝑗|) = 0} =

[𝑓 + 𝑔]. Therefore [𝑓] + [𝑔] ∈ ℒ 

(2) Let[𝑓] ∈ ℒ and 𝜆 ∈ ℝ, then 𝜆[𝑓] = 𝜆{𝑔 ∈ 𝐿: 𝐼𝐷(|𝑓 − 𝑔| = 0)} = {𝜆𝑔 ∈ 𝐿: 𝜆𝐷(|𝑓 − 𝑔|) = 0)} = {ℎ = 𝜆𝑔 ∈

𝐿: 𝐷(|𝜆𝑓 − ℎ| = 0)} = {ℎ ∈ 𝐿: 𝐷(|𝜆𝑓 − ℎ| = 0)} = [𝜆𝑓].Therefore 𝜆[𝑓] ∈ ℒ. 

Theorem 4.6: 

The normed space (ℒ, ‖∙‖)is a Banach space. 

Proof: 

Let {𝑓𝑛}be a Cauchy sequencein ℒ then for every 𝜀 > 0 there exist 𝑠 ∈ ℤ+ such that ‖𝑓𝑛 − 𝑓𝑚‖ < 𝜀 for all 

𝑛,𝑚 ≥ 𝑠, suppose that 𝑓𝑛 → 𝑓 we must prove that 𝑓 is in 𝒮, since 𝑓 = lim
𝑛→∞

𝑓𝑛by (4.3) we have 𝑓𝑛
𝑖.𝑛.
→ 𝑓. 

Theorem 4.7: 

   Let(𝛺, 𝐿, 𝐷) be a Daniell space and let 𝑓, 𝑓𝑛, 𝑔, 𝑔𝑛 ∈ 𝑆, 𝑛 ∈ ℕ and 𝜆 ∈ ℝ, such that 𝑓𝑛
𝑖.𝑛.
→ 𝑓and 𝑔𝑛

𝑖.𝑛.
→ 𝑔 then, 

(1)  𝑓𝑛 Cauchy a.u, 

(2) 𝜆𝑓𝑛
𝑖.𝑛.
→ 𝜆𝑓, 

(3)  𝑓𝑛 + 𝑔𝑛
𝑖.𝑛.
→ 𝑓 + 𝑔, 

(4) |𝑓𝑛|
𝑖.𝑛.
→ |𝑓|, 

(5) 𝐷(𝑓𝑛)
𝑖.𝑛.
→ 𝐷(𝑓). 

Proof: 

(1) Since 𝑓𝑛
𝑖.𝑛.
→ 𝑓 then ‖𝑓𝑛 − 𝑓‖ = 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 

𝑛 → ∞implies that  𝑓𝑛 is a Cauchy sequence in norm. 

(2) Since 𝑓𝑛
𝑖.𝑛.
→ 𝑓 then ‖𝑓𝑛 − 𝑓‖ = 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 

𝑛 → ∞, 𝜆‖𝑓𝑛 − 𝑓‖ = 𝜆𝐷(|𝑓𝑛 − 𝑓|) = 𝐷(𝜆(|𝑓𝑛 − 𝑓|)) = 𝐷(|𝜆𝑓𝑛 − 𝜆𝑓|) = ‖𝜆𝑓𝑛 − 𝜆𝑓‖ → 0 as 𝑛 → ∞, 

therefore𝜆𝑓𝑛
𝑖.𝑛.
→ 𝜆𝑓. 

(3) Since 𝑓𝑛
𝑖.𝑛.
→ 𝑓 then ‖𝑓𝑛 − 𝑓‖ = 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 𝑛 → ∞ and since 𝑔𝑛

𝑖.𝑛.
→ 𝑔 then 

‖𝑔𝑛 − 𝑔‖ = 𝐷(|𝑔𝑛 − 𝑔|) → 0 as 𝑛 → ∞therefore 

‖(𝑓𝑛 + 𝑔𝑛) − (𝑓 + 𝑔)‖ = 𝐷(|(𝑓𝑛 + 𝑔𝑛) − (𝑓 + 𝑔)|) 

= 𝐷(|(𝑓𝑛 − 𝑓) + (𝑔𝑛 − 𝑔)|) ≤ 𝐷(|𝑓𝑛 − 𝑓|) + 𝐷(|𝑔𝑛 − 𝑔|) → 0 𝑎𝑠 𝑛 → ∞,then 

‖(𝑓𝑛 + 𝑔𝑛) − (𝑓 + 𝑔)‖ → 0 𝑎𝑠 𝑛 → ∞. Therefore 𝑓𝑛 + 𝑔𝑛
𝑖.𝑛.
→ 𝑓 + 𝑔. 

(4) Since 𝑓𝑛
𝑖.𝑛.
→ 𝑓 then ‖𝑓𝑛 − 𝑓‖ = 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 

𝑛 → ∞, then ‖|𝑓𝑛| − |𝑓|‖ = 𝐷(||𝑓𝑛| − |𝑓||) ≤ 𝐷(|𝑓𝑛 − 𝑓|) → 0 𝑎𝑠 𝑛 → ∞then ‖|𝑓𝑛| − |𝑓|‖ → 0 as 𝑛 →

∞Therefore|𝑓𝑛|
𝑖.𝑛.
→ |𝑓|. 

(5) Since  𝑓𝑛
𝑖.𝑛.
→ 𝑓 then ‖𝑓𝑛 − 𝑓‖ = 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 

𝑛 → ∞, then ‖𝐷(𝑓𝑛) − 𝐷(𝑓)‖ = |𝐷(𝑓𝑛) − 𝐷(𝑓)| = |𝐷(𝑓𝑛 − 𝑓)| ≤ 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 𝑛 → ∞. Therefore 

𝐷(𝑓𝑛)
𝑖.𝑛.
→ 𝐷(𝑓). 
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Theorem 4.8: 

Let (Ω, 𝐿∗. 𝐷) be a complete Daniell space then for every 𝜖 > 0 there exist a sequence of functions {𝑓𝑛} such that 

𝑓 = ∑ 𝑓𝑛
∞
𝑛=1  and ∑ (∞

𝑛=1 |𝑓𝑛| ≤ 𝐷(|𝑓|) +  𝜖. 

Proof: 

Let 𝑓 = 𝑔1 + 𝑔2 +⋯ be an arbitary expansion of 𝑓. Then there exists an 𝛼0 ∈ ℕ such that ∑𝛼=𝛼0+1  D(|𝑔𝑛|) <
ε

2
 

. Define 𝑓1 = 𝑔1 +⋯+ 𝑔𝛼0 and 𝑓𝑛 = 𝑔𝛼+𝛼0−1 for 𝑛 ≥ 2.  

Then obviously 𝑓 = 𝑓1 + 𝑓2 +⋯, sinceD(|𝑓1|) − D(|𝑓|) ≤ D(|𝑓1 − 𝑓|) and 𝑓 − 𝑓1 = 𝑓2 + 𝑓3 +⋯, we get 

𝐷(|𝑓1|) − D(|𝑓) ≤ ∑  ∞
𝑛=2 D(|𝑓n|) and hence, 𝐷(|𝑓1|) − ∑  ∞

𝑛=2 D(|𝑓𝑛|) ≤ D(|𝑓|) 

Consequently,∑  ∞
𝑛=1  𝐷(𝑓𝑛) = D(|𝑓1|) + ∑  ∞

𝑛=2  𝐷(𝑓𝑛) = 𝐷(|𝑓1|) − ∑  ∞
𝑛=2   𝐷(𝑓𝑛) + 2∑  ∞

𝑛=2   𝐷(𝑓𝑛) ≤ 𝐷(|𝑓|) +

2∑  ∞
𝑛=2  𝐷(|𝑓𝑛|) = D(|𝑓|) + 2∑  ∞

𝑛=𝑛0+1
 D(|𝑔𝑛|) < D(|𝑓|) + 𝜀. 

Theorem 4.9: 

let(Ω, 𝐿∗. 𝐷) be a complete Daniell space, then 𝑓1 + 𝑓2 +⋯ .= 𝑓𝑖. 𝑛., and𝐷(𝑓) = 𝐷( 𝑓1) + 𝐷(𝑓2) + ⋯ 

proof: 

Let 𝜀 > 0 be arbitrary and let 𝜀1 + 𝜀2 +⋯ be a series of positive numbers whose sum is 𝜀. By theorem 4.8, we 

can choose expansions 𝑓𝑖 = 𝑓11 + 𝑓12 +⋯ , (𝑖 = 1,2, … ),where 𝑓𝑖𝑗 ∈ 𝐿
∗, such that 𝐷(𝑓i1) + 𝐷(𝑓i2) + ⋯ <

𝐷(𝑓i) + 𝜀i1for all 𝑖 ∈ ℕ. Let 𝑔1 + 𝑔2 +⋯be a series of functions in 𝐿∗which is composed of all the series in 

(4.1). Then from (4.2) we obtain 𝐷(𝑔1) + 𝐷(𝑔2) + ⋯ < 𝑀 + 𝜀1 + 𝜀2 +⋯,where 𝑀 = D(𝑓1) + D(𝑓2) + ⋯, 

Moreover, if the series (4.3) converges absolutely at a point 𝑥 ∈ 𝛺, then esch of the series in (4.1) converges 

absolutely at that point, and consequently 𝑔1(𝑥) + 𝑔2(𝑥) +⋯ = 𝑓1(𝑥) + 𝑓2(𝑥) + ⋯ = 𝑓(𝑥)at that 𝑥. This 

proves that 𝑓 is Daniellintegrableand 𝐷(𝑓) = 𝐷(𝑔1) + D(𝑔2) + ⋯ = D(𝑓1) + D(𝑓2) + ⋯, Moreover, since for 

every 𝑛 ∈ ℕ,𝑓 − 𝑓1 −⋯− 𝑓𝑛 = 𝑓𝑛+1 + 𝑓𝑛+2 +⋯, we have ∥∥𝑓 − 𝑓1 −⋯− 𝑓𝑛∥∥1 ≤ ∑  ∞
𝑘=𝑛+1 ∥∥𝑓𝑘∥∥1 → 0as 𝑛 → ∞, 

which means that 𝑓1 + 𝑓2 +⋯ = 𝑓 i.n. 

Theorem 4.10 

Let (Ω, 𝐿∗. 𝐷)be a complete Daniell space and 𝑓1, 𝑓2, … ∈ 𝐿
∗ and ∑ ‖(𝑓𝑛)‖

∞
𝑛=1 < ∞, then there exists 𝑓 ∈ 𝐿∗ such 

that 𝑓 = ∑ 𝑓𝑛
∞
𝑛=1 . 

proof:  

Let 𝑓1, 𝑓2, … ∈ 𝐿
∗ and ∑ ‖(𝑓𝑛)‖

∞
𝑛=1 < ∞. Define  𝑓(𝑥) = {

∑ 𝑓𝑛
∞
𝑛=1 (𝑥)   ,
0           𝑜. 𝑤.

∑ |𝑓𝑛(𝑥)|
∞
𝑛=1 < ∞, then 𝑓 = ∑ 𝑓𝑛

∞
𝑛=1  

implies that 𝑓 ∈ 𝐿∗. 

Theorem 4.11: 

the space ((Ω, 𝐿∗. 𝐷), ‖∙‖) is complete 

Proof: 

We will prove that every absolutely convergent series converges in norm. 

If ∑ ‖(𝑓𝑛)‖
∞
𝑛=1 < ∞, for some𝑓𝑛 ∈ 𝐿

∗, then by  theorem 4.10, there exist𝑓 ∈ 𝐿∗such that𝑓 = ∑ 𝑓𝑛
∞
𝑛=1 , by theorem 

4.9,  that the series ∑ 𝑓𝑛
∞
𝑛=1 convergesto 𝑓 in norm. 
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