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Abstract: India, which is in the tropical wet and dry area, receives a huge 

amount of precipitation each year, with the monsoon season being the 

main contributor. The environment resulting challenges also has led to 

significant improvements in the average rain distribution and its volatility, 

as well as the severity and frequency of severe rainfalls. Rain also exhibits 

great temporal and geographic volatility. Different Time-series 

prognostication models for predicting rain, including Holt's Linear Trend 

methodology (HLTM), Generalized Auto-Regressive Conditional 

Heteroskedasticity (GARCH), Holt's Winter Seasonal Methodology 

(HWSM), and seasonal Autoregressive Integrated Moving Average, were 

used in this study (SARIMA). In order to analyse the most basic time-

series prognostication model, a comparison analysis was built. The 

HWSM model was determined to have the lowest error rate when 

compared to the other models. Mean square error (MSE), Root Mean 

square error (RMSE), and Mean Absolute Error are the analysis criteria 

used to compare different time-series rain forecast methods (MAE). The 

HWSM model exhibited, by far, the lowest error rate of the other models, 

with error rates of 4.767 and 4.343 RMSE, 1.51 and 1.432 MAE, and 

25.65 and 24.75 MSE for datasets 1 and 2, respectively. 

Introduction 

Since rainfall data should be recorded over a period of time, it is considered a statistical 

analysis. In areas including business, ecological prognostication, and technological 

prognostication, statistical prognostication is employed as a decision-support tool. Due to 

connectivity, a variety of models and methodologies for statistical forecasting have been 

developed that enable various types of inputs, anticipated outcomes, and straightforward 

implementation. Our country's economy is based primarily on agriculture. The value of the 

harvest has changed more recently due to uncertain environmental condition patterns and 

other market changes. Despite this, farmers continue to ignore these hazards, which results 

in destroyed crops and significant losses. Because of this, they are unable to determine 

which harvest would result in higher revenues. 
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Lack of understanding about various agricultural pests and resulting yearly precipitation 

amounts causes farms to be destroyed. The economy of Asia still consists mostly of 

agriculture, which would be strongly correlated with the amount of precipitation received 

annually [1]. Geophysical and atmospheric science both depend on accurate precipitation 

forecasts. On the other side, current systems frequently provide low error rates and perform 

well in terms of prediction. Numerous situations call for poor performance from 

mathematical prediction models. The whole prediction performance and error rate for 

precipitation prediction were investigated throughout this examination, which examined and 

assessed a number of time-series foretelling models. A variety of techniques are used to 

estimate the annual precipitation, including Multi-Layer Perceptron (MLP), Deep Neural 

Networks (DNN), Random Call Forest (RDF), K-Nearest Neighbors (KNN), K-Suggests 

that clump (KMC), Support Vector Machine (SVM), Simulated Neural Network (SNN), 

Transfer learning (TL), automobile Encoder Neural Network (AENN), and Convolution 

Neural Network (CNN) [ Such methods also incorporate the techniques from the metric 

capacity unit [3] and Deep Learning (DL) [4], both of which have application potential. The 

following might serve as a summary of the rest of this article: In Section Two, pertinent 

analysis is presented, in Section Three, the study's region is covered, and in Section Four, 

several approaches for the prediction model for precipitation estimation are presented, 

Section five contains the observations and outcomes, and Section vi concludes the analysis. 

1.  Related Works 

Researchers, academicians, and specialists used a variety of techniques to predict the 

frequency of precipitation by taking into consideration monumental efficiency assessment 

metrics, specifically RMSE, variance (SD), Learning rate (LR), MAE, Accuracy, MSE, 

Mean Absolute proportion Error (MAPE), F1-Measure, Sensitivity, and Nash-Sutcliffe 

efficiency (NSE) (PET). An overview of precipitation prediction models is provided in 

Table 1. 
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2.  Case Study Location 

Telangana, India's 29th state, was established on June 2, 2014, following the detachment 

from Andhra Pradesam (AP), situated in south India. AP surmised geographic directions of 

15°55' N and 19°55' N scope and 77°10' E to 81°50' E longitude, and has limits with AP. 

The long stretch of Telangana state's South West Rainstorm (SWM) precipitation in August 

(31.35%), sought after by 19.6%, 30.6%, 18.4 percent for June, July, and September months. 

The state encounters annual rainfall of 78.65% only from SWM season. 

Fig.1 portrays the regions of Telangana in India. Fig.2 portrays state's divisions. Territories 

in Telangana's north-east regions considered the most water compared with the territory's of 

south during June to September in SWM season. 

Table2 displays the greatest storm over the most recent thirty years (1989-2018) for each 

SWM seasons in Telangana state. 

 

Fig. 1: Regions of Telangana Location 
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Fig. 2: state divisions 

Table 2. The maximum rainfall in each SWM season 

Month Maximum downpour experienced in 

mm 

Year 

June 234.8 2000 

July 492.6 2013 

August 426.5 1990 

September 248.7 2007 

June-

September 

1133.1 2013 

Annual 1384.7 2013 

3.  Methodology 

Figure 3 illustrates the evaluation and comparison of SARIMA, GARCH, HWSM, and 

HLTM as part of the methodology used to forecast the amount of precipitation. 
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Fig. 3: Working Principle 

3.1.  Data Selection and Preprocessing 

The two datasets utilized are DataSet-1 (DS-1), which comprises normalized data on 

atmospheric phenomena for each district and months from 1951 to 2000, and DataSet-2 

(DS-2), which contains mean atmospheric phenomena data for each district from 1901 to 

2015. These datasets have been compiled by IMD [12]. MAE, RMSE and MAE were 

utilized to evaluate the classification model's dependability. 

3.2.  SARIMA 

The philosophy used to anticipate the precipitation include the Informational collection 

Determination, Information Preprocessing, and assessing and contrasting GARCH, 

SARIMA, HLTM and HWSM which are displayed in Fig.3. 

3.3.  GARCH 

GARCH models are applied when the measure of variability of the error term is either 

constant or uniform. So, in a mathematical model based on statistical assumptions, 

heteroskedasticity refers to the uneven pattern of parameter variation. Data from time series 

are subjected to these analysis, which examines the contingent measure of variability. When 

applied to datasets having a positive excess kurtosis error and a large SD, it quantifies all 

multi-dimensional relationship. The model is a modified version of ARCH that additionally 

comprises of MA. 

3.4.  HWSM 

Holt Winter's Exponential Smoothing and triple exponential smoothing are some names for 

it. This time-series forecasting methodology projects parameter estimates by accounting for 

both trend and seasonality. 

In order to apply HWSM, periodic variables must first be exponentially smoothed. Level 

and trend are also included. Over a time overarching pattern of values is used frequently. In 
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the sequence, the levels are the average values. Seasonality, commonly referred to as a 

repetition of a particular set of recordings taken with specific breaks. It consists of a 

evaluation formula and 3 smoothing formulae: Lei, Tri, and Pei, which are expressed in eqn. 

(1), eqn. (2), eqn. (3) & eqn. (4) with 3 smoothing parameters α, β, and γ. 

This formula shows the adjusted mean value of non-seasonal prediction and the season 

calibrated observation for period i. The trend formula is equivalent to HLTM. An identified 

mean value of the current time interval indicator and the previous season is shown by the 

below periodic formula. 

Level Formula                         Lei = α(ai − Pei−l) + (1 − α)(Lei−1 + Tri−1)         eqn. (1) 

Trend Formula                          Tri = β(Lei − Lei−1) + (1 − β)Tri−1                  eqn. 

(2) 

Seasonality/Periodicity Formula    Pei = γ(ai − Lei) + (1 − γ)Pei−l                         eqn. (3) 

Prediction formula                         Fi+n = Lei +  n Tri + Pei+n−l                                eqn. (4) 

Were Le represents Level, F indicates prediction at n duration, a represents observation, 

Tr is trend parameter, Pe specifies time interval indicator, α, β, and γ are constants that must 

be evaluated similar to MSE model as small as possible, l gives the duration of time interval 

patterns for α, β and γ, where α, β and γ resides between 0 and 1. 

3.5.  HLTM 

Enhanced SES enables forecasting of data with a trend. The SES method known as HLTM 

is combined with the level and trend. Now this requires 3 formulas to be justified 

algebraically. The HLTM is composed of two smoothing equations, Lei and Tri, which are 

represented by Equations (5), (6), and (7), respectively, and have smoothing parameters of 

and.α and β. 

Level Formula                         Lei = α(ai − Pei−l) + (1 − α)(Lei−1 + Tri−1)                 (5) 

Trend Formula                          Tri = β(Lei − Lei−1) + (1 − β)Tri−1                                (6) 

Prediction formula                           Fi+n = Lei +  n Tri                                                       (7) 

4.  Results and Discussion 

We evaluated these approaches using their RMSE, MAE, and MSE values. Table 3 presents 

a comparison of the various Time-Series forecasting methods. Table 3 shows that HWSM 

had the lowest error rates for DS-1 and DS-2, respectively, 4.767 and 4.343 RMSE, 1.51 and 

1.432 MAE, and 27.65 and 24.75 MSE. Fig. 4 and Fig. 5 shows the representation of MAE, 

MSE and RMSE values for the DS-1, DS-2 for each of the models of time series forecasting 

that were taken into consideration. 
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Fig. 4: Forecasting models of MAE, MSE and RMSE values of Dataset - 1 

 

Fig. 5: Forecasting models of MAE, MSE and RMSE values of Dataset - 2 

Table 3. Comparison Forecasting Models in time intervals. 

Model RMSE MAE MSE 

DS-1 DS-2 DS-1 DS-2 DS-1 DS-2 

SARIMA 6.856 6.706 3.1 2.541 30.260 28.542 

GARCH 6.682 5.280 3.678 3.59 49.021 39.443 

HWSM 4.767 4.343 1.51 1.432 27.65 24.75 

HLTM 7.912 8.241 3.462 3.394 55.723 52.390 

5.  Conclusion 

This research offered a Comparative Forecasting Models in time intervals for evaluating 

rainfall in Telangana state. The results show that HWSM outperforms the alternative 

strategies in terms of RMSE, MSE and MAE. The HLTM, HWSM, SARIMA, and GARCH 
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time-series forecasting models were evaluated. It is clear that HWSM has the lowest error 

rates for datasets 1 and 2, with 4.767 and 4.343 RMSE, 1.51 and 4.432 MAE, and 27.65 and 

24.75 MSE, respectively. 
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