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Abstract. In elliptic curve encryption, scalar multiplication (SM) is the 

most expensive and time-consuming operation. The elliptic curve 

cryptography attracts interest since it offers the same high security with a 

lower key length, owing to the advancement of modern technologies. Thus, 

this study designed a new scalar multiplication algorithm using six blocks 

of the elliptic net in a double and double-add method that cost 12M+6S in 

each block. This study also proposed a new formula for double block via 

the elliptic net method that saves four multiplications and four squaring 

from the prior double step. Experimental results over prime field p were 

conducted using safe curves namely numsp384t1 and numsp512t1, with 

equivalence sequences that satisfied gcd(p-1, 3). In the case of the 384-bits, 

results indicate that the developed scalar multiplication algorithm 

accelerates the running time by 65.96 % compared to the binary method, 

44.81 % compared to the elliptic net without equivalent sequences, 30.28 

% compared to the elliptic net with temporary variables, and 19.71 % 

compared to the seven blocks of the elliptic net with Karatsuba method. In 

a similar comparison for the 512-bits case, the proposed algorithm attained 

are 67.23 %, 44.65 %, 30.37 %, and 22.64 % faster, respectively. 

Keywords: division polynomials, elliptic net, scalar multiplication, six 

block, Twisted Edwards curve. 

 

Introduction 

In the past, the elliptic curve cryptography (ECC) was introduced by [1]. Meanwhile, [2] also 

implement the ECC concept for a cryptosystem over binary field. In terms of security, ECC 
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provides equal security to Rivest-Shamir-Adleman (RSA) scheme but with a smaller key size, 

resulting in it to become faster and requiring less hardware than RSA. Because ECC utilises 

multiplication, it is also less computationally expensive than RSA, which depends on 

exponential computation. However, ECC security depends on parameters, besides the length 

[3]. To date, though ECC and RSA use similar mathematical problems, there is insufficient 

evidence to conclude that ECC is more secure than RSA because the security of RSA is based 

on the integer factorisation problem, while the security of ECC is based on the elliptic curve 

discrete logarithm problem [4].  

The efficiency of ECC depends on the scalar multiplication (SM) algorithm [5]. SM is a major 

operation in ECC applications and protocols. It is defined by the process of finding nP where 

n is a positive integer and P is the point on the elliptic curve. It is a prominent element to 

implement a discrete logarithm-based system and a time-consuming operation in ECC [6, 7]. 

Recently, the advancement of the Internet of Things has centered on small-scale technological 

devices. These advancements lead to higher usage of memory and power consumption, in 

which smaller devices have limited capacity. Therefore, it is important to improve the 

computational efficiency of the SM algorithm [8].  

The binary method, which is based on repeated addition and doubling of point P, was the 

traditional method to compute SM. The formula of addition and doubling in Affine coordinate 

involves an inverse operation, which results in the most expensive operation over prime field 

[9]. The author in [10] proposed a simplified double and double-add algorithm over prime field 

that executes the computation of SM via elliptic net values using eight terms in each iteration 

loop. Further improvements on double and double-add equations are done by [11] and [12] 

using the elliptic net with temporary variables and the elliptic net with the Karatsuba method, 

respectively. Nevertheless, the double and double-add algorithm in the literature for computing 

SM algorithm over prime field in Affine coordinate has high complexity due to the inversion 

process [13].  

The Weierstrass curves have been used to compute the elliptic net SM algorithm. Meanwhile, 

the Twisted Edwards curves are used in the testing environment since the curves satisfy the 

properties of the elliptic net and contain a complete group law compared to the Weierstrass 

curves. Moreover, [14] indicate that the Twisted Edwards curves are the fastest for the elliptic 

curve Diffie-Hellman scheme over prime field. To date, there has not been a prior study that 

computes the elliptic curve SM algorithm via the elliptic net with fewer than eight intermediate 

variables. Therefore, the current research aims to design the SM algorithm over prime field 

using the optimal method for the Twisted Edwards curves in the running environment. Also, 

the primary purpose of this research is to reduce the complexity of the SM algorithm in ECC.  

Literature Review 

The division polynomial of the Twisted Edwards curves is analogous to the elliptic curves in 

the Weierstrass form. The polynomials characterise the n-torsion points of the Twisted 

Edwards curves for a positive integer n. The general form of the Twisted Edwards curves is 
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ax2+ y2 = 1 + dx2y2 where the coefficient a and d are integrals (a ≠ d) and nonzero. The division 

polynomials of the Edwards curves that satisfy the properties of EDS are as follows:  

( )( )

( )
0 1 2

1
0, 1,

2 1

a d y
W W W

x y

− +
= = =

−
   (1) 

( ) ( )
( )( )
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− + −
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−
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For n ≥5, Wn can be defined recursively using: 

3 3

2 1 2 1 1n n n n nW W W W W+ + − += −  (4) 

  

( )2 2

2 2 1 1 2 1n n n n n nW W W W W W W+ − − += −  (5) 

The auxiliary polynomials for the Twisted Edwards curves are denoted by 

( )
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( )
22 n
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W

a d W
 =

−
 . The SM via the EN consists of the process 

of double and double-add in the algorithm. The researcher in [15] introduces the double and 

double-add algorithms to compute the sequences of the elliptic divisibility sequences (EDS). 

Given the initial values of an EDS, the technique computes the n-th term of the sequences in 

log (n) time. This method allows the sequences to start elsewhere with the given initial terms 

of the EDS. For clarity, Wn functions as the terms of the EN.  

Then, [16] generates a block centred at the scalar consisting of eight consecutive EN terms 

centred at Wn. The first five terms of the EN can be calculated using Eqs. (1) to (3) and the 

next terms of the EN can be calculated using the recurrences formula as Eqs. (4) and (5). The 

double and double-add via EN algorithm was utilised by [16] for computing the cryptographic 

pairing. In 2014, [10] adapted the algorithm to compute the SM method using the short 

Weierstrass division polynomials with the cost of 26M+6S in each double and double-add step. 

Also, [11] reduced the cost to 16M+10S in each double and double-add step with additional 

temporary variables. Recent improvements on a similar scheme were done by [12] using seven 

blocks of the elliptic net with the Karatsuba method and the required lemma and the explicit 

formula upon Twisted Edwards curves is as below: 
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Lemma 1 [12]: 

Let  n  be the proper elliptic divisibility sequences over pF  with p elements 2 0  . Then 

there exists an elliptic net nW  over pF  which is equivalent 1778ot he sequence  n  such that: 

2 1n

n nW c −= . 

Theorem 1 [12]: Let Wn defined from Lemma 1 and 
3

2 2W c= . If ( )1 1,P x y=  on the Twisted 

Edwards curves over pF , then ( ),n nnP x y=  can be computed as follows: 

( )
( ) 2 2 2

2 2

2

, ,
2

n n n n
n n

n n n

a d W c W c
x y

W W c

 



 − −
=  

+ 
 (6) 

where, 

( ) 2 2

1 1
1 4

1

n n n
n

y W c W W

y a d
 − +

+
= −

− −
 (7) 

Note that, to reduce the number of operations in double and double-add methods, Lemma 1 is 

utilised to set W2 = 1 upon the Twisted Edwards curves. This step saves 4M in each loop. 

Algorithm 1 highlights the latest SM algorithm via EN proposed by [12] using Theorem 1. 

Algorithm 1: SM algorithm via EN [12] 

Input: ( )1 0 2l ln n n n−=  with 1ln = , ( ) ( ), , , 2 ,pP E a d E K W  =F  ( )3 ,L W= ( )4 ,  M W=

( )
1

2 ,W
−

=  ( )
1

1 ,A y
−

= − ( )
1
,B a d

−
= − c such that 

3c = ,
( )2

22 1 2,  
n nR c S c

− −= = and 

21 4 .nT c −=  

Output: ( ),n nx y . 

1.  , 1,0,1, , ,V K K L M − −  

2. For i from 1l −  down to 0 do 

       2.1 If 0in =  then 

   ( )( )2 1 1 1i i i i i i iV S S P P R R+ + + − + − +  

             ( )( )( )2 1 2 2 2i i i i i i iV S S P P R R + + + + − + − +   

              ( )( )6 3 4 3 4 3 4V S S P P R R − + − + . 

       2.2 Else 
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  ( )( )( )2 2 2 2i i i i i i iV S S P P R R + + + − + − +              

( )( )2 1 1 2 1 2 1 2i i i i i i iV S S P P R R+ + + + + + + − + − +              

         1 3 5 t V V ; 
2

2 4 t V ; ( )3 2  t inverse V  

 ( )6 1 2 3V t t t  −  

3.  0 1 2 3 4 5 6 7, , , , , , ,V V V V V V V V V  

4. 
2

0 2 ;S V  
2

1 3 ;S V  
2

2 4S V  

5. ( )3 5 0 1 2J V V S V S −    

6. ( )
2

2 4 0 2 / 2K V V S S  + − −
 

  

7. 1 4L ABS R KC −   

8. 2M J      

9. 1N L S R +    

10. ( )O inverse MN    

11. ( ) 1nx a d gLS ON −   

12. ( )1ny L S R OM −  

13. Return ( ),n nx y . 

 

 Based on Algorithm 1, Lines 2.1 and 2.2 denote the double and double-add steps executed for 

l −1 times for l bit length. This means double is executed at h −1 times, whereas double-add is 

performed for l−h times with the cost of 14M + 8S and 15M + 8S, respectively. Line 7 contains 

the formula for W2n. After implementing the squaring trade-off as shown in Line 6, 1M is 

converted into 1S, proving that Line 7 needs 3M. Lines 4 to 9 refer to variables that are 

previously calculated using the last EN block generated for n0 based on Eqs. (6) to (7), which 

demands 11M + 3S. Lines 11 and 12 contain the explicit formula upon the Twisted Edwards 

curves, therefore these lines require 7M. Let CP denotes the cost of Lines 4 to 12, where CP 

needs 14M + 4S. All in all, the overall cost of Algorithm 2 includes double, double-add, and 

CP costs. The expected cost of Algorithm 1 is calculated using the following proposition: 

Proposition 1 [12]: For a sufficiently large scalar ( )1 0 2
, ,...,l ln n n n−= , the complexity of 

Algorithm 1 is denoted by 
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                                              ( ) ( )[11] 1C l h double h doubleAdd CP= − + − +  (7) 

Methodology 

This section proposes an elliptic net block using six terms by discarding two terms of each 

block. In contrast to [10], [11], [12], and [17], this study discarded the first term 3kW − and the 

eighth term 4kW +  on the block centred at K, considering the block consisted of EN terms from 

2 3 until k kW W− + . This saves the cost of updating the block in each iteration. Thus, the block 

centred at 2K consists of EN term from 2 2 2 3 until k kW W− +  and the block centred at 2K+1 

consists of EN term from 2 1 2 4 until .k kW W− +  However, the formula for 2 4kW +  requires 

1 2 3 4, , ,  and k k k k kW W W W W+ + + +  while 2 2kW −  requires 3 2 1 1, , ,  and k k k k kW W W W W− − − +  which are not 

available on the block centred at K using the six terms. In the current study, new formulas for 

2 2kW −  and 2 4kW +  are obtained by substituting n = 2 and m = 2k into Eq. (5). That means,  

( )2 2

2 4 2 3 2 1 2 3 1 2 2 2/k k k k kW W W W W WW W+ + + += −  (8) 

( )2 2

2 2 2 1 2 1 2 3 1 2 2 2/k k k k kW W W W W WW W− + − += −  (9) 

From Eqs. (8) and (9), it is necessary to calculate 2 1 2 2 1,  and k k kW W W− +  to acquire 2 2kW −  terms, 

while 2 1 2 2 2 3,  and k k kW W W+ + +  for 2 4kW +  terms. Note that the inverse of 2 2 2 and k kW W +  can be 

replaced by cheaper shifts divisions of 2 and subtraction [18] using the binary inversion 

algorithm. 

Results and discussions 

The current study proposes new double and double-add methods by utilising the elliptic net 

block created in the previous section. The authors in [10] used temporary variables iS  and iP  

as an array of six elements that costed 6M + 6S in both methods. [11] and [10] utilised the same 

iS  and iP  by adding two groups of intermediate variables , , , ,  and i i i i iA B C D E  for each double 

and double-add function. The formula was assigned to the algorithm, with each formula 

consisting of repeated multiplications. For instance, 2k kW W−  was used in 2 1kW −  and 2kW  

formulas, 1 1k kW W− +  was used in 2 1 2 1,k kW W− +  and 2 2kW +  formulas, whereas 2k kW W +  was used in 

2 2 1,k kW W +  and 2 3kW +  formulas. The number of multiplications was reduced using the 

intermediate variables for the repeated multiplication 2kW −  and kW  such that 2k ka W W−= , 

followed by 1 1k kb W W− +=  , and 2k kc W W += . The repeated operation of squaring was reduced 

using e, f, and g such that 
2

1ke W −= , 
2

kf W= , and 
2

1.kg W +=   

If the formula, in terms of intermediated variables, is rewritten with 2 1 2,k kW W−  and 2 1kW +  as R, 

S and T, then the new formula will be ,R af be= − ( ) 2/S ag ce W= −  and .T bg cf= −  This 
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equation costs 6M if the division by 2W  is neglected, since this changes to one using the 

properties of equivalence sequences [17]. The authors in [11] mention that the computation of 

( )2 2R af be= − , ( )2 2S ag ce= − , and ( )2 2T bg cf= −  can be calculated using A, B, C, D 

and E such that ( )( ),A e f a b= + −  ( )( ),B e f a b= − +  ( )( ),C e g a c= + −  ( )( ),D e g a c= − +  

and 2( )( ).E f g b c= − +  Then, the terms 2R, 2S, and 2T are calculated as ( ) / 2R A B= − , 

( ) / 2,S C D= − and ( ) ( ) / 2T C D A B E= + − + −   , proving that R, S, and T can be computed 

using 5M instead of 6M. This method calculates 2 1 2,k kW W−  and 2 1kW + . Let 2 2kW +  and 2 3kW +  be 

U and V and the intermediate variables d for the repeated multiplication 1kW +  and 3kW +  such 

that 1 3k kd W W+ += , and the repeated operation squaring is 
2

2kh W += . As a result, the formulas 

for U and V are 2( ) /U bh df W= −  and ( ).V ch dg= −  

This formula computes U and V with 4M which can be reduced to 3M using intermediate 

variables F, G, and H, such that ( )( )F f h b d= + − , ( )( )G f h b d= − + , and ( )( ).H g h c d= + −  

Hence, ( ) 2/ 2U F G W= −  and (( ) ( ) ) / 2V H A B C D F G= − + − + + + . Note that from the 

intermediate variables assigned, 2 2 ,A B ae bf+ = −  2 2 ,C D ae cg+ = −  2( )F G bf dh+ = −  

and 2( )F G bh df− = − . Since 2bh df U W− =  , substituting bh df−  with the F – G equation 

results in 22( ),F G U W− =   and 2( ) / 2U F G W= − . Next, plugging ( )( )H g h c d= + − , 

( ) 2( ),A B ae bf+ = −  ( ) 2( )C D ae cg+ = − , and  ( ) 2( )F G bf dh+ = −  into V yield the 

following: 

( )( ) ( ) ( )( )

( ) ( )

(( ) ( ) ) / 2

   2 2 2 2 2 2 / 2

   

   .                                                                                

V H A B C D F G

g h c d ae bf ae cg bf dh

cg dg ch dh cg bf bf dh

ch dg

= − + − + + +

= + − − − − − + −

= − + − − − + −  

= −

 

The new ENSM algorithm can be designed based on the generation of the elliptic net value in 

double and double-add processes with the initial block is the block centred at one. The scalar 

has a binary representation with the last iteration of the elliptic net block producing the elliptic 

net values for the block centred at scalar n. The formula for  and n nx y  in Theorem 1 is 

simplified by using temporary variables to optimise the inversion cost.  

                                                

( )

( )

11

11

Q QR R

R QR Q

−−

−−

 =


=

 (10) 

 

Eq. (10) shows that the inverse of Q and R can be computed by inversing QR. This merge the 

two inversions into one inversion with two multiplications. Algorithm 2 depicts a new design 

of SM algorithm based on the proposed double and double-add with the multiple point formula 

upon the Twisted Edwards curves. 
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Algorithm 2 : New design of SM algorithm via EN in Affine coordinate 

Input: Integer ( )1 2 0 2l ln d d d− −= , Point ( ) 2 3 4, ,  and , , ,P x y a d E K W L W M W=  = = =  

and
1

2W −= , , ( )
1

1B y
−

= − ( )
1

C a d
−

= − , and g  such that 
3g = . 

Output: ( ),n nQ x y=   

1.  , 1,0,1, , ,V K K L M − −  

2. For i from 2l −  down to 0 do 

2.1 If 0id =  then 

        ( )V double V  

2.2 Else 

        ( )-V double add V  

3. Return V       

4. 
2 2 2

0 1 1 2 2 3; ;S V S V S V          

5. ( )2 4 0 0 1J V V S V S   −         

6. ( )
2

1 3 0 2 / 2K V V S S  + − −
 

      

7. 
2

1 4L AB S g K C   −         

8. 2M J   

9. 
2

1N L S g +  

10. ( )O inverse M N    //**Binary inversion algorithm   

11. ( ) 1nx a d L S g O N −             

12. ( )2

1ny L S g O M −    

13. Return Q 

 

From Algorithm 2, the inputs are point P, the curve parameters, and the elliptic net values (K, 

L and M) associated to point P, with   is the inverse of 2W . As a result, g is chosen such that 

3 .g = The values of A, B, and C are precomputed as they can be calculated using the curves 

parameters. Line 1 is the initial vector that changes after the application of the equivalence of 

EN. The cost of the proposed double or double-add is 12M + 6S (Lines 3 and 4). Thus, Lines 

3 or 4 are executed consecutively for 1l −  times. To be more specific, Line 3 is executed when 

0id = ,  while Line 4 is executed when 1id = . More, Lines 6 until 14 are the formula of SM 

for the elliptic net. Line 7 is the formula for 2nW  while Lines 8 and 9 are executed to obtain 

1 1 and ,n n nW W − + respectively. After implementing the squaring trade-off as shown in Line 8, 

this converts 1M into 1S. Thus, Line 9 needs 3M. Line 12 in Algorithm 2 changes the cost to 

1I using [19] method. Taking into consideration the cost of double and double-add, Algorithm 

2 does not depend on the Hamming weight. The inversion in Line 12 is computed using the 

binary inversion algorithm [20] by replacing the inversion with cheaper shifts divisions by 2 

1A y= +
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and subtraction [18]. CP illustrates the cost of multiple points from Lines 6 to 14. The point 

operational cost of Algorithm 2 is stated in Proposition 2.  

 

Proposition 2: For a sufficiently large scalar ( )1 2 0 2l ln d d d− −= , the complexity of Algorithm 

2 is denoted by 

                                                 ( )Proposed 1C l double CP= − +  (11) 

Proof.  From Algorithm 2, it is clear that Lines 3 and 4 are executed consecutively for every 

digit id  in 2 1l i−   . The double process is only executed when 0id = , whereas double-add 

when 1id = . Therefore, the cost of Algorithm 2 is the total of Line 2 and CP, which is denoted 

by the cost from Lines 5 to 13. Then, the cost is ( )Proposed 1C l double CP= − + .  

 

Table 1 summarises the existence of double and double-add in literature, including the double 

and double-add proposed in the current study. The similar costs of double and double-add in 

the proposed method signify the non-reliance on the Hamming weight of the scalar. 

 

Table 1. Cost of double and double-add 

Method 
Temporary 

variables 
double double-add 

Total cost 

double double-add 

[9] - 2M+2S+2I 9M+2S+4I 2M+2S+2I 9M+2S+4I 

[10] 6M+6S 20M 20M 26M+6S 26M+6S 

[11] 12M+10S 4M 4M 16M+10S 16M+10S 

[12] 7M+6S 7M 8M 14M+8S 15M+8S 

Proposed 10M+6S 2M 2M 12M+6S 12M+6S 

 

Performance analysis 

In this section, the results of the analysis of complexity which was carried out to compare the 

performance of the proposed SM algorithm with prior methods in literature are discussed. For 

the implementation, the analyses in [9] and [10] were conducted on 384-bits and 512-bits using 

the safe curves of numsp384d1 and numsp512d1, while [12] and the proposed method used the 

safe curves of numsp384t1 and numsp512t1. The parameters were double and double-add 

points. The cost for binary method algorithm [9] was based on 

( ) ( )1 - ,BMC l h double h double add= − + −  while [10] and [11] utilised 

( )KR 1 double CWC l − += , with CW representing the explicit formula cost upon the 
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Weierstrass curves. Even though, [12] used Eq. (7), this research considered Eq. (11). To 

evaluate the cost of point operation for the proposed algorithm, the cost was compared to other 

proposed functions in the literature. On average, the binary representation with bit length  l 

=384, the Hamming weight is h =192, and  l = 512, h = 256. Table 2 summarises the cost of 

point operations using various SM methods.  

Table 2. Point operation cost 

Method 384-bits 512-bits 

[9] 191 double-add + 192 double 255 double-add + 256 double 

[10] 383 double + CW 511 double + CW 

[11] 383 double + CW 511 double + CW 

[12] 
191 double-add + 192 double + 

CP 

255 double-add + 256 double + 

CP 

Proposed 383 double + CP 511 double + CP 

 

According to Table 2, methods by [9] and [12] consisted of double and double-add operations 

due to the dissimilar cost for each operation. The point operation costs in [10] and [11] were 

similar since the authors utilised the identical multiple point formula upon the Weierstrass 

curves over prime field with CW denoting the cost, M denoting the multiplication, S denoting 

the squaring, and I denoting the denote the inversion. The field operation cost for each method 

was then evaluated by substituting double and double-add from Table 1. With Cl denoting the 

field operation cost at bit length l, the field operation costs for 384-and 512-bits for the 

proposed method were computed by substituting 1 12  6double M S= + 1 and CP = 14M + 4S 

into the point operation cost obtained in Table 2. That means, 

 

( ) ( )
384 383 

      383 12 6 14 4

      4610 2302 ,

C double CP

M S M S

M S

= +

= + + +

= +

 

 

( ) ( )
512 511 

      511 12 6 14 4

      6146 3070 .

C double CP

M S M S

M S

= +

= + + +

= +

 

The computed Cl values are benchmarked with other methods. Table 3 summarises the field 

operation costs for the average case in 384-bits and 512-bits. 

 

Table 3. Field operation cost 

 

Method 

384-bits 512-bits 

M S I M S I 
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[9] 2103 766 1148 2807 1022 1532 

[10] 9966 2301 1 1329 3069 1 

[11] 6136 3833 1 8184 5113 1 

[12] 5567 3968 0 7423 4092 0 

Proposed 4610 2302 0 6146 3070 0 

 

Based on Table 3, for 384-bits, the costs of M, S, and I for [9], [10], [11], and [12] are 2103M 

+ 766S + 1148I, 9966M + 2301S + 1I, 6136M + 3833S + 1I and 5567M + 3968S, respectively. 

The costs for these methods rise to 2807M + 1022S + 1532I, 1329M + 3069S + 1I, 8184M + 

5113S + 1I and 7423M + 4092S for 512-bits. These were by considering a scalar n with l = 

384 and h = 192. Note that the point operational cost in the proposed method was 383 double 

+ CP, one double cost was 12M + 6S, and CP from Algorithm 2 was 14M + 4S. The field 

operation cost was calculated using double cost (see Table 1) and the total number of 

multiplications in 384-bits was computed by substituting 1 0.87S M=  such that: 

( )

( )

384

4610  

.

 

2302

     383 12 6 14 4

   

  2 4610  230 0.8

   6612.74

7

TM S

M

M S

M

M S

M

=

+

=

+

= + +

= +
 

A similar computation was conducted on 512-bits using 1 0.89S M=  such that: 

( )

( )

512

6146  

.

 

3070

     512 12 6 14 4

   

  0 4610  307 0.8

   8878.30

9

TM S

M

M S

M

M S

M

=

+

=

+

= + +

= +
 

The computed total multiplications were benchmarked with other SM methods over prime field 

using the similar conversion unit proposed by [14]. Fig. 1 depicts the estimated number of 

multiplications based on double and double-add in various SM methods. 
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Fig. 1. Estimated number of multiplications 

Fig. 1 shows that the proposed method is optimised when compared to [9], [10], [11], and [12]. 

The cost of methods increases with each increment in bit size. For instance,  methods by [9], 

[10], [11], and [12] required 19426.9M, 11982.38M, 9485.22M. and 8236.16M, respectively, 

while the proposed method requires 6612.74M for 384-bits. As for the case of 512-bits, the 

proposed method requires 8878.30M versus 27094.9M for [9], 16040.67M for [10], 

12749.83M for [11], and 11064.88M for [12]. For computing the timing in 384-bits, the 

squaring and inversion were converted to M by multiplying with 0.87 and 14.51, respectively 

[14]. For 512-bits, the multiplication requires 0.89 and 15.26, respectively. The running time 

denoted by RTl at 384-bits can be computed by substituting 
71 5.8 10M s−=  , such that 

( )7

384 6612.74 5.8 10 0.00384RT M s s−=  = . A similar computation is computed for 512-bits. 

The recorded running time for various SM methods over prime field, in seconds, is tabulated 

in Table 4. 

Table 4. Estimated running time (s) 

 

Method 384-bits 512-bits 

[9] 0.01127 0.02303 

[10] 0.00695 0.01363 

[11] 0.00550 0.01084 

[12] 0.00478 0.00941 

Proposed 0.00384 0.00755 
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From Table 4, at 384-bits, the proposed method accelerates the running times by 65.96 % 

compared to [9], 44.81 % compared to [10], 30.28 % compared to [11], and 19.71 % compared 

to [12]. On a similar comparison, the percentages of acceleration for 512-bits are computed at 

67.23 %, 44.65 %, 30.37 %, and 22.64 %, respectively. 

Summary 

In this research, a new SM algorithm has been designed using the modified double and double-

add formula. The new SM algorithm over prime field is designed in the Affine coordinate 

without inversion based on the safe curves of numsp384t1 and numsp512t1. For 384-bits, 

results indicate that the proposed design of SM is 65.96 % better in performance compared to 

[9], 44.81 % better than [10], 30.28 % better than [11], and 19.71 % better than [12]. On a 

similar comparison for 512-bits, the performance of the proposed SM algorithm attains 67.23 

%, 44.65 %, 30.37 %, and 22.64 % better in performance, respectively. 
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